精英家教网 > 初中数学 > 题目详情
8.求下列各式的值.
(1)-$\sqrt{(-25)^{2}}$
(2)$\sqrt{169}$+$\sqrt{144}$
(3)$\sqrt{{8}^{2}+1{5}^{2}}$
(4)$\sqrt{1-\frac{9}{25}}$.

分析 (1)根据算术平方根的性质计算即可求解;
(2)先计算算术平方根,再相加即可求解;
(3)先计算根号里面的算式,再计算算术平方根即可求解;
(4)先计算根号里面的算式,再计算算术平方根即可求解.

解答 解:(1)-$\sqrt{(-25)^{2}}$=-25;
(2)$\sqrt{169}$+$\sqrt{144}$
=13+12
=25;
(3)$\sqrt{{8}^{2}+1{5}^{2}}$=$\sqrt{64+225}$=$\sqrt{289}$=17;
(4)$\sqrt{1-\frac{9}{25}}$=$\sqrt{\frac{16}{25}}$=$\frac{4}{5}$.

点评 考查了算术平方根,非负数a的算术平方根$\sqrt{a}$有双重非负性:①被开方数a是非负数;②算术平方根$\sqrt{a}$本身是非负数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知:如图①,在Rt△ABC中,AB⊥AC,AB=3cm,BC=5cm,将△ABC绕AC中点选择180°得到△CDA,如图②.再将△CDA沿AC的方向以1cm/s的速度平移得到△NDP;同时,点Q从点C出发,沿CB方向以1cm/s的速度运动,当△NDP停止平移时,点Q也停止运动,设运动时间为t(s)(0<t<4).解答下列问题.
(1)当t为何值时,PQ∥AB?
(2)设△PQC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QDC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥DQ?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线;
(2)若BC=2$\sqrt{5}$,sin∠BCP=$\frac{\sqrt{5}}{5}$,求点B到AC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.“$\frac{16}{49}$的平方根是±$\frac{4}{7}$”用数学式表示为(  )
A.$\sqrt{\frac{16}{49}}$=±$\frac{4}{7}$B.$\sqrt{\frac{16}{49}}$=$\frac{4}{7}$C.±$\sqrt{\frac{16}{49}}$=±$\frac{4}{7}$D.-$\sqrt{\frac{16}{49}}$=-$\frac{4}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.$\sqrt{(-8)^{2}}$=8,($\sqrt{8}$)2=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.直线MN表示一条河流的河岸,在河流同旁有A、B两个村庄,现要在河边修建一个供水站给A、B供水.问:这个供水站建在什么地方,可以使铺设管道最短?请在图中找出表示供水站的点P.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)-$\root{3}{2\frac{10}{27}}$                 
(2)$\root{3}{1-\frac{37}{64}}$
(3)$\root{3}{-27}$+$\sqrt{(-3)^{2}}$-$\root{3}{-1}$           
(4)$\sqrt{0.04}$+$\root{3}{-8}$-$\sqrt{\frac{1}{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)$(π-5)^{0}+\sqrt{4}-|-3|$ 
(2)$3a+(1+\frac{1}{a-1})•\frac{{a}^{2}-2a}{a-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列图形中,∠1与∠2是同位角的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案