精英家教网 > 初中数学 > 题目详情

【题目】如图,∠CAB=DBA,再添加一个条件,不一定能判定ABC≌△BAD的是(  )

A. AC=BDB. 1=2C. AD=BCD. C=D

【答案】C

【解析】

根据全等三角形的判定定理(SASASAAASSSS)判断即可.

A. AC=BD,∠CAB=DBAAB=AB

∴根据SAS能推出ABC≌△BAD,故本选项错误;

B. ∵∠CAB=DBAAB=AB,∠1=2

∴根据ASA能推出ABC≌△BAD,故本选项错误;

C. 根据AD=BC和已知不能推出ABC≌△BAD,故本选项正确;

D. ∵∠C=D,∠CAB=DBAAB=AB

∴根据AAS能推出ABC≌△BAD,故本选项错误;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点O,∠AOE=90°.

1)如图1,若OC平分∠AOE,求∠AOD的度数;

2)如图2,若∠BOC=4FOB,且OE平分∠FOC,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的20个小球,其中红球6个,黑球14

1)先从袋子中取出xx3)个红球后,再从袋子中随机摸出1个球,将“摸出黑球”,记为事件A.请完成下列表格.

事件A

必然事件

随机事件

x的值

2)先从袋子中取出m个红球,再放入2m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°AB=3mBC=12mCD=13mDA=4m,若每平方米草皮需要200元,问要多少投入?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级共有800名学生,准备调查他们对低碳知识的了解程度.

(1)在确定调查方式时,团委设计了以下三种方案:

方案一:调查七年级部分女生;

方案二:调查七年级部分男生;

方案三:到七年级每个班去随机调查一定数量的学生.

请问其中最具有代表性的一个方案是   

(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;

(3)在扇形统计图中,比较了解所在扇形的圆心角的度数是   

(4)请你估计该校七年级约有   名学生比较了解低碳知识.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°DCB上一点,过点DDEAB于点E

(1)CD=DE,判断∠CAD与∠BAD的数量关系;

(2)AE=EBCB=10AC=5,求△ACD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=4cmBC=6cm,现有一动点PA出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒,

(1)t=3秒时,求BP的长;

(2)t为何值时,连接BPAP,△ABP的面积为长方形的面积三分之一?

(3)QAD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BC分别是∠PAQ的两边APAQ上的点,直线l垂直平分BC

1)尺规作图:在直线1上求作一点O,使得点OAPAQ距离相等(不写作法,保留作图痕迹)

2)过O点作OEAPOFAQ,垂足分别为EF。求证BE=CF

查看答案和解析>>

同步练习册答案