精英家教网 > 初中数学 > 题目详情
如图,长方形制片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图

第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
(1)所拼成得四边形是什么特殊四边形?
(2)则拼成的这个四边形纸片的周长的最小值是多少?
(1)画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.
图中,N1N2=EN1+EN2=NB+NC=BC,
M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),
又∵M1M2N1N2
∴四边形M1N1N2M2是一个平行四边形,

(2)其周长为2N1N2+2M1N1=2BC+2MN.
∵BC=6cm为定值,
∴四边形的周长取决于MN的大小.
如答图2所示,是剪拼之前的完整示意图,
过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,
则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,
∵M是线段PQ上的任意一点,N是线段BC上的任意一点,
根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4cm.
∴其周长的最小值为:2BC+2MN=2×6+2×4=20(cm).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F;若BE:EC=m:n,则AF:FB=______(用含有m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,则BD的长度为(  )
A.
3
-1
B.3-
3
C.
3
2
D.
3-
3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC在平面直角坐标系中的位置如图所示.
(1)作△ABC关于y轴的对称图形△A1B1C1(不写作法):并写出顶点各点的坐标;
(2)计算△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

概念理解
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分--重拼”.如图1,一个梯形可以剖分--重拼为一个三角形;如图2,任意两个正方形可以剖分--重拼为一个正方形.
尝试操作
如图3,把三角形剖分--重拼为一个矩形.(只要画出示意图,不需说明操作步骤)

阅读解释
如何把一个矩形ABCD(如图4)剖分--重拼为一个正方形呢?操作如下:
①画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;
②图4中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
请说明按照上述操作方法得到的四边形EBHG是正方形.

拓展延伸
任意一个多边形是否可以通过若干次的剖分--重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,OB=8,OC=4,则△BDO的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中画出△ABC关于y轴对称的图形△DEF(A、B、C的对应点分别是D、E、F);
(2)请写出D、E、F的坐标.

查看答案和解析>>

同步练习册答案