精英家教网 > 初中数学 > 题目详情

【题目】小明想测量位于池塘两端的AB两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得ACF45°,再向前行走100米到点D处,测得BDF60°.若直线ABEF之间的距离为60米,求AB两点的距离(结果保留根号).

【答案】(40+)米

【解析】

AMEF于点M,作BNEF于点N,可以分别求得CMDN的长,由于AB=CN-CM,从而可以求得AB的长.

AMEF于点M,作BNEF于点N,如图所示:

由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°
CM= =60米,
DN= 米,
AB=CD+DN-CM=100+20-60=40+20)米,
AB两点的距离是(40+20)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点BCD始终在一条直线上,已知托臂AC20厘米,托臂BD40厘米,支点CD之间的距离是10厘米,张角∠CAB60°.

(1)求支点D到滑轨MN的距离(精确到1厘米)

(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即ACAC′,BCBC)当张角∠CA'B45°时,求滑块A向左侧移动的距离(精确到1厘米)(备用数据:1.411.732.452.65)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点BF为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF

1)四边形ABEF_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)

2AEBF相交于点O,若四边形ABEF的周长为40BF=10,则AE的长为________∠ABC=________°.(直接填写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点An的坐标为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.

(1)如图1,求⊙O的半径;

(2)如图1,若点EBC的中点,连接PE,求PE的长度;

(3)如图2,若点MBC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bxA40),B13)两点,点CB关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H

1)求抛物线的表达式;

2)直接写出点C的坐标,并求出△ABC的面积;

3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;

4)若点M在直线BH上运动,点Nx轴上运动,当以点CMN为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知yxx>0)的函数,表1中给出了几组xy的对应值:

1

x

1

2

3

y

6

3

2

1

⑴以表中各对对应值为坐标,在图1的直角坐标系中描出各点,用光滑曲线顺次连接.由图像知,它是我们已经学过的哪类函数?求出函数解析式,并直接写出的值;

⑵如果一次函数图像与⑴中图像交于(13)和(31)两点,在第一、四象限内当x在什么范围时,一次函数的值小于⑴中函数的值?请直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.

如图,等边ABC的边长为1,点A在第一象限,点B与原点O重合,点Cx轴的正半轴上.A1B1C1就是ABCγ(1,180°)变换后所得的图形.

ABCγ(1,180°)变换后得A1B1C1A1B1C1γ(2,180°)变换后得A2B2C2A2B2C2γ(3,180°)变换后得A3B3C3,依此类推……

An1Bn1Cn1γ(n,180°)变换后得AnBnCn,则点A1的坐标是__,点A2018的坐标是 

查看答案和解析>>

同步练习册答案