【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.
【答案】
【解析】证明△AMO≌△CNO,将四边形CMON的面积转化为△ACO的面积,即可用割补法求出阴影部分的面积.
因为点O是AB的中点,所以AO=BO=CO,
由勾股定理得AB=.
因为∠ACB=90°,∠EOF=90°,所以∠CMO+∠CNO=180°,又∠AMO+∠CMO=180°,所以∠AMO=∠CNO,
又因为∠A=∠B,AO=CO,
所以△AMO≌△CNO.
所以四边形CMON的面积=△CMO的面积+△CNO的面积
=△CMO的面积+△CNO的面积=△ACO的面积=△ABC面积的一半.
所以阴影部分的面积=扇形OEF的面积-四边形CMON的面积
=扇形OEF的面积-△ACO的面积
=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l1:y=x+b与x轴交于点A,与y轴交于点B,且点C的坐标为(4,﹣4).
(1)点A的坐标为 ,点B的坐标为 ;(用含b的式子表示)
(2)当b=4时,如图所示.连接AC,BC,判断△ABC的形状,并证明你的结论;
(3)过点C作平行于y轴的直线l2,点P在直线l2上.当﹣5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知一次函数的图象经过,两点.求这个一次函数的解析式;并判断点是否在这个一次函数的图象上;
(2)如图所示,点D是等边内一点,,,,将绕点A逆时针旋转到的位置,求的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县某中学开展“庆五四”歌咏比赛活动,八年级(1)、(2)班各选出5名选手参加比赛,两个班选出的5名选手的比赛成绩(满分为100分)如图所示.
(1)根据图示填写下表:
班级 | 中位数(分) | 众数(分) |
八(1) | ________________ | 85 |
八(2) | 80 | ________________ |
(2)请你计算八(1)和八(2)班的平均成绩各是多少分.
(3)结合两班比赛成绩的平均数和中位数,分析哪个班级的比赛成绩较好.
(4)请计算八(1)、八(2)班的比赛成绩的方差,并说明哪个班的成绩比较稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,PB=PC,给出下面结论:①BP=CP,②EB=EC,③AD⊥BC,④EA平分∠BEC,其中正确的结论有( )
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少总费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线 l 上有 A、B 两点,AB=12cm,点 O 是线段 AB 上的一点,OA=2OB.
(1)OA=_______cm,OB=________cm;
(2)若点 C 是线段AB的中点,求线段 CO 的长;
(3)若动点 P、Q分别从 A、B同时出发,向右运动,点P的速度为2 厘米/秒,点Q的速度为1厘米/秒,设运动时间为x秒,当 x=_____秒时,PQ=4cm;
(4)有两条射线 OC、OD 均从射线 OA 同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD 同时停止旋转,设旋转时间为 t 秒,当t为何值时,射线OC⊥OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值.
(1)6a2-5a(a+2b-1)+a(-a+10b)+5,其中a=-1,b=2008;
(2)3xy2﹣[xy﹣2(2xy﹣x2y)+2xy2]+3x2y,其中x、y满足(x+2)2+|y﹣1|=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com