【题目】在平面直角坐标系xOy中,直线l1:y=x+b与x轴交于点A,与y轴交于点B,且点C的坐标为(4,﹣4).
(1)点A的坐标为 ,点B的坐标为 ;(用含b的式子表示)
(2)当b=4时,如图所示.连接AC,BC,判断△ABC的形状,并证明你的结论;
(3)过点C作平行于y轴的直线l2,点P在直线l2上.当﹣5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.
【答案】(1)(﹣2b,0),(0,b);(2)△ABC是等腰直角三角形,理由见解析;(3)存在,满足条件的点P坐标为(4,﹣)或(4,8)或(4,﹣12),理由见解析
【解析】
(1)由待定系数法即可解决问题;
(2)△ABC是等腰直角三角形.根据两点间距离公式以及勾股定理的逆定理即可判断;
(3)分三种情形①如图2中,当AB=AP,∠BAP=90°,设直线l2交x轴于N.设OB=m,则OA=2m,理由全等三角形的性质,构建方程解决问题.②如图3中,当AB=AP′,∠BAP′=90°时,设OB=m,OA=2m,理由全等三角形的性质构建方程解决问题.③如图3中,当AB=PB,∠ABP=90°时,同法可得.
解:(1)对于直线y=x+b,令x=0,得到y=b,令y=0,得到x=﹣2b,
∴A(﹣2b,0),B(0,b)
故答案为(﹣2b,0),(0,b);
(2)△ABC是等腰直角三角形.
理由:∵b=4,
∴A(﹣8,0),B(0,4),∵C(4,﹣4),
∴AB=,
∴AB=BC,
∵AB2+BC2=(4)2+(4)2=160,AC2=160,
∴AB2+BC2=AC2,
∴∠ABC=90°,
∴△ABC是等腰直角三角形;
(3)①如图2中,当AB=AP,∠BAP=90°,设直线l2交x轴于N.
∵OA=2OB,设OB=m,则OA=2m,
由△AOB≌△PNA,可得AN=OB=m,PN=OA=2m,
∴ON=3m=4,
∴m=,
∴PM=,
∴P(4,﹣).
②如图3中,当AB=AP′,∠BAP′=90°时,设OB=m,OA=2m,
由△AOB≌△P′NA,可得AN=OB=m,P′N=OA=2m,
∵ON=4=2m﹣m,
∴m=4,
∴P′N=8,
∴P′(4,8),
③如图3中,当AB=PB,∠ABP=90°时,同法可得P(4,﹣12).
综上所述,满足条件的点P坐标为(4,﹣)或(4,8)或(4,﹣12).
科目:初中数学 来源: 题型:
【题目】如图所示,在数轴上点A表示的有理数为-6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,直接写出所有满足条件的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①将下列各数填入相应的括号中:
0,-2019,7.01,+6,+30﹪,
负数:{ }
正数:{ }
整数:{ }
②.画一条数轴,在数轴上标出以下各点,然后用“<”符号连起来.
-;-(-4);-|-1|;;0;;2.5;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时张用A方法,其余用B方法。
(1)用的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,FH平分∠EFD.求证:EG∥FH.
请完成以下证明过程:
证明:∵AB∥CD(已知)
∴∠AEF=∠EFD(__________________)
∵EG平分∠AEF,FH平分∠EFD(__________)
∴∠___=∠AEF,∠___= ∠EFD(____________)
∴∠_____=∠______(等量代换)
∴EG∥FH(__________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一种学生用计算器,进价为每台20元,售价为每台30元时,每周可卖160台,如果每台售价每上涨2元,每周就会少卖20台,但厂家规定最高每台售价不能超过33元,当计算器定价为多少元时,商场每周的利润恰好为1680元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com