【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, = ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
【答案】(1)300,10,补全条形图见解析;
(2)该校选择“跑步”这种活动的学生约有800人;
(3)画树状图见解析,每班抽取的两种形式恰好是“跑步”和“跳绳”的概率为.
【解析】试题分析:本题的⑴问根据已知的条形图中活动的人数,再对应扇形图中相应的百分比,可以先求出这次调查的人数,并在此基础上求出的值.本题的⑵问样本的“跑步”的百分比来作为总体中“跑步”的百分比,以此可以计算出该校选择“跑步”这种活动的学生的人数.本题的⑶问是属“不放回”的情况,可采取列举法中的画树状图的来找所关注的恰好是“跑步”和“跳绳”结果数,从而求出概率.
试题解析:(1)根据条形图和扇形图可知:跑步的人数是120人,在被调查的人中所占的百分比为40%;所以这次被调查的人数为(人),
跳绳的人数为: (人),所以,所以.
故分别应填:300和,补全的条形图如下:
(2)样本中“跑步”的人数占被调查的人数的百分比为40%,所以在总体中“跑步”的人数也占40%,所以估计该校选择“跑步”这种活动的学生约有(人).
(3)画树状图为:
由树状图可知:每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
科目:初中数学 来源: 题型:
【题目】已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.
(1)如图1,当EP⊥BC时,求CN的长;
(2) 如图2,当EP⊥AC时,求AM的长;
(3) 请写出线段CP的长的取值范围,及当CP的长最大时MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.
(1)填空:abc 0,a+b 0,ab﹣ac 0;(填“>”,“=”或“<”)
(2)若|a|=2且点B到点A,C的距离相等,
①当b2=16时,求c的值;
②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数与反比例函数的图象在第一、第三象限分别交于,两点,直线与轴,轴分别交于两点.
(1)求一次函数和反比例函数的解析式;
(2)比较大小: ;
(3)求出时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表给出三种上宽带网的收费方式.
收费方式 | 月使用费/元 | 包时上网时间/ | 超时费/(元/) |
不限时 |
设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;
填空:当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当﹣2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com