精英家教网 > 初中数学 > 题目详情

【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

【答案】
(1)

解:∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,

∴B(3,0),C(0,3),

把B、C坐标代入抛物线解析式可得 ,解得

∴抛物线解析式为y=x2﹣4x+3


(2)

解:∵y=x2﹣4x+3=(x﹣2)2﹣1,

∴抛物线对称轴为x=2,P(2,﹣1),

设M(2,t),且C(0,3),

∴MC= = ,MP=|t+1|,PC= =2

∵△CPM为等腰三角形,

∴有MC=MP、MC=PC和MP=PC三种情况,

①当MC=MP时,则有 =|t+1|,解得t= ,此时M(2, );

②当MC=PC时,则有 =2 ,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);

③当MP=PC时,则有|t+1|=2 ,解得t=﹣1+2 或t=﹣1﹣2 ,此时M(2,﹣1+2 )或(2,﹣1﹣2 );

综上可知存在满足条件的点M,其坐标为(2, )或(2,7)或(2,﹣1+2 )或(2,﹣1﹣2


(3)

解:如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

设E(x,x2﹣4x+3),则F(x,﹣x+3),

∵0<x<3,

∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,

∴SCBE=SEFC+SEFB= EFOD+ EFBD= EFOB= ×3(﹣x2+3x)=﹣ (x﹣ 2+

∴当x= 时,△CBE的面积最大,此时E点坐标为( ,﹣ ),

即当E点坐标为( ,﹣ )时,△CBE的面积最大


【解析】(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表

看法

频数

频率

赞成

5

无所谓

0.1

反对

40

0.8


(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线l是由函数y= 在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4 ,4 ),B(2 ,2 )的直线与曲线l相交于点M、N,则△OMN的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣ x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).

(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:3tan30°+|2﹣ |+( 1﹣(3﹣π)0﹣(﹣1)2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题: 体重频数分布表

组边

体重(千克)

人数

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16


(1)填空:①m=(直接写出结果); ②在扇形统计图中,C组所在扇形的圆心角的度数等于度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表

成绩x(分)

频数(人)

频率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

根据所给信息,解答下列问题:

(1)m= , n=
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.

(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.

查看答案和解析>>

同步练习册答案