精英家教网 > 初中数学 > 题目详情

【题目】当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表

看法

频数

频率

赞成

5

无所谓

0.1

反对

40

0.8


(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.

【答案】
(1)解:调查的人数为:40÷0.8=50人

如图所示:

看法

频数

频率

赞成

5

0.1

无所谓

5

0.1

反对

40

0.8

统计图为:


(2)解:∵赞成的频率为:0.1,

∴扇形图中“赞成”的圆心角是360°×0.1=36°


(3)解:0.8×3000=2400人,

答:该校持“反对”态度的学生人数是2400人


【解析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.
【考点精析】本题主要考查了频数分布直方图和扇形统计图的相关知识点,需要掌握特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图);能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图案中,既是中心对称又是轴对称图形的个数有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

14

0.28

70.5~80.5

16

80.5~90.5

90.5~100.5

10

0.20

合计

1.00


(1)填写频率分布表中的空格,并补全频率分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为(
A.9
B.6
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:

销售量n(件)

n=50﹣x

销售单价m(元/件)

当1≤x≤20时,m=20+ x

当21≤x≤30时,m=10+


(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.
(1)求证:FG=FB.
(2)若tan∠F= ,⊙O的半径为4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是(
A.
B.
C.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

查看答案和解析>>

同步练习册答案