分析 (1)将点(4,5)代入y=x2-4x+c后即可求出c,然后配方即可求出顶点坐标.
(2)抛物线与坐标轴只有两个交点,有两种情况,一是x轴的一个交点与y轴的交点必定重合,即抛物线必过(0,0),另一种是抛物线与x轴只有一个交点,令△=0即可.
解答 解:(1)把(4,5)代入y=x2-4x+c,
∴5=16-16+c,
∴c=5,
∴y=x2-4x+5=(x-2)2+1
∴顶点坐标(2,1)
(2)当抛物线与x轴只有一个交点时,
∴△=0,
∴16-4c=0,
∴c=4,
当抛物线与x轴、y轴的交点重合时,
此时抛物线必过(0,0),
∴c=0,
综上所述,c=4或0
点评 本题考查二次函数图象的性质,涉及抛物线与x轴交点问题,解方程、分类讨论的思想等知识.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 160° | B. | 150° | C. | 120° | D. | 110° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com