精英家教网 > 初中数学 > 题目详情
(1)已知△ABC中,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,试探索∠BOC与∠A之间的数量关系,并说明理由.
精英家教网
(2)已知BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,BO、CO相交于O,试探索∠BOC与∠A之间的数量关系,并说明理由.
精英家教网
(3)已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,它与BO的延长线交于点O,试探索∠BOC与∠A的数量关系,并说明理由.
精英家教网
分析:(1)根据三角形内角和定理求出∠A+2∠1+2∠2=180°,再根据三角形的一个外角等于与它不相邻的两个内角的和,可证∠BOC=90°+
1
2
∠A.
(2)由三角形的一个外角等于与它不相邻的两个内角的和可证2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根据三角形内角和定理可证2∠BOC=180°-∠A.
(3)由三角形的一个外角等于与它不相邻的两个内角的和可证∠ACE=2∠2=∠A+2∠1,∠2=∠1+∠BOC,即可证)∠BOC=
1
2
∠A.
解答:精英家教网解:(1)∠BOC=90°+
1
2
∠A.
理由如下:延长BO交AC于点D,
∵BO、CO分别是∠ABC、∠ACB的平分线,
∴∠A+2∠1+2∠2=180°,
∠BDC=∠A+∠1,
∠BOC=∠BDC+∠2,
∴∠BOC=∠A+∠1+∠2=90°+
1
2
∠A.
(2)∠BOC=90°-
1
2
∠A.
理由如下:
∵BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,即∠BOC=90°-
1
2
∠A.

(3)∠BOC=
1
2
∠A.
理由如下:
∵BD为△ABC的角平分线,CO为△ABC的外角平分线,
∴∠ACE=2∠2=∠A+2∠1,
∠2=∠1+∠BOC,
∴∠BOC=
1
2
∠A.
点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,则四边形DBFE的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-9x+20=0的一个根,则该三角形为
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AB垂直平分线交AC于D,连接BE,若∠A=40°,则∠EBC=(  )

查看答案和解析>>

同步练习册答案