精英家教网 > 初中数学 > 题目详情
已知:如图,在直角坐标系中,直线AB交y轴于点A,交x轴于点B,其解析式为y=-
34
x+2.又O1是x轴上一点,且⊙O1与直线AB切于点C,与y轴切于原点O.
(1)求点C的纵坐标;
(2)以AO为直径作⊙O2,交直线AB于D,交⊙O1于N,连ON并延长交CD于G,求△ODG的面积;
(3)另有一圆过点O1,与y轴切于点O2,与直线AB交于M、精英家教网P两点,求证:O1M•O1P=2.
分析:(1)由解析式解出两点的坐标,过C点作CH垂直x轴,进而求纵横坐标.
(2)设直线AB与⊙O2的交点为D连接两点,求出CD,然后求出DG,从而求出面积.
(3)连接O1C,设⊙O1半径为r,由相似定理,进而证明.
解答:(1)解:由y=-
3
4
x+2,得OA=2,OB=
8
3

∴AB=
10
3

由AC=2,得CB=
4
3

过C点作CH⊥x轴,垂足为H,得CH∥y轴,
CH
AO
=
CB
AB

CH=
4
5
,即点C的纵坐标为
4
5


(2)解:∵OA为⊙O2的直径,
∴OD⊥AB,
由OD•AB=OA•0B,得OD=
8
5

则AD=
AO2-OD2
=
6
5

CD=2-
6
5
=
4
5

设DG=x,由切割线定理得GD•GA=GN•GO.
∴x(x+
6
5
)=(
4
5
-x)2.解得:x=
8
35
,∴DG=
8
35

∴S△ODG=
1
2
OD•DG=
32
175


(3)证明:连接O1C,设⊙O1半径为r,
将C点纵坐标
4
5
代入y=-
3
4
x+2,得x=
8
5

∴OH=
8
5
,O1H=
8
5
-r.
在Rt△CHO1中,由勾股定理得(
4
5
)
2
=r2-(
8
5
-r)
2

解得:r=1.
故⊙O1和⊙O2都是半径为1的等圆,
过点O1且与y轴切于点O2的圆是以N为圆心,1为半径的圆.
作⊙N的直径O1Q,连接PQ.O1Q=2,O1C=1.
∵∠PQO1=∠CMO1
∴Rt△PQO1∽Rt△CMO1
O1Q
O1M
=
O1P
O1C

∴O1M•O1P=O1Q•O1C=2×1=2.
点评:本题主要考查一次函数的应用,本题比较烦,计算和证明都要仔细.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

科目:初中数学 来源:2011-2012学年甘肃省兰州四中九年级(上)期中数学试卷(解析版) 题型:解答题

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=S1

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

    (1)如图①,当PA的长度等于 

时,∠PAB=60°;

              当PA的长度等于    时,△PAD是等腰三角形;

    (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角

坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐

标为(ab),试求2 S1 S3-S22的最大值,并求出此时ab的值.

 

查看答案和解析>>

同步练习册答案