精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.

(1)求证:△ADE≌△CDF;
(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.

【答案】
(1)解:∵四边形ABCD是菱形,

∴∠A=∠C,AB=CB,AD=DC,

∵BE=BF,

∴AE=CF,

在△ADE和△CDF中,

∴△ADE≌△CDF


(2)解:∵△ADE≌△CDF,

∴DE=DF,

∵∠DEF=65°,

∴∠EDB=∠FDB=25°,

∵四边形ABCD是菱形,

∴AB=AD,

∵∠A=40°,

∴∠ADB=70°,

∴∠ADE=70°﹣25°=45°,

∴∠DFC=180°﹣40°﹣45°=95°


【解析】(1)根据菱形的性质和全等三角形的判定方法“SAS”即可证明△ADE≌△CDF;(2)根据△ADE≌△CDF,得到DE=DF,再求出∠EDB=∠FDB=25°,根据四边形ABCD是菱形,∠A=40°,求出∠ADB=70°,∠ADE=45°,再根据三角形的内角和为180°,即可解答.
【考点精析】关于本题考查的菱形的性质,需要了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.

(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:
14,23,16,25,23,28,26,27,23,25
(1)这组数据的众数为 , 中位数为
(2)计算这10个班次乘车人数的平均数;
(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1 , y1)与P2(x2 , y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).

(1)已知点A(﹣ ,0),B为y轴上的一个动点.
①若点B(0,3),则点A与点B的“非常距离”为
②若点A与点B的“非常距离”为2,则点B的坐标为
③直接写出点A与点B的“非常距离”的最小值
(2)已知点D(0,1),点C是直线y= x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上(如图3),给出四个结论:
①AF的长为10;②△BGH的周长为18;③ = ;④GH的长为5,
其中正确的结论有 . (写出所有正确结论的番号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.

(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(﹣1,﹣1),则两个正方形的位似中心的坐标是

查看答案和解析>>

同步练习册答案