精英家教网 > 初中数学 > 题目详情

【题目】某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:
14,23,16,25,23,28,26,27,23,25
(1)这组数据的众数为 , 中位数为
(2)计算这10个班次乘车人数的平均数;
(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?

【答案】
(1)23;24
(2)解:平均数= (14+16+23+23+23+25+25+26+27+28)=23(人)

答:这10个班次乘车人数的平均数是23人


(3)解:60×23=1380(人)

答:在高峰时段从总站乘该路车出行的乘客共有1380人


【解析】解:(1)这组数据按从小到大的顺序排列为:14,16,23,23,23,25,25,26,27,28,
则众数为:23,
中位数为: =24;
【考点精析】通过灵活运用算术平均数,掌握总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=10,AD=8,则AE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=x﹣2的图象与反比例函数y2= 的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC= ,点B的坐标为(m,n),求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对正方形纸片ABCD进行如下操作:

(I)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE1=a1
(II)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE2=a2
(III)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE3=a3
按此作法从操作(2)起重复以上步骤,得到a1 , a2 , …,an , …,现有如下结论:
①当a1=10°时,a2=40°;
②2a4+a3=90°;
③当a5=30°时,△CDE9≌△ADE10
④当a1=45°时,BE2= AE2
其中正确的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲从M地骑摩托车匀速前往N地,同时乙从N地沿同一条公路骑自行车匀速前往M地,甲到达N地后,原路原速返回,追上乙后返回到M地.设甲、乙与N地的距离分别为y1、y2千米,甲与乙之间的距离为s千米,设乙行走的时间为x小时.y1、y2与x之间的函数图象如图1.

(1)分别求出y1、y2与x的函数表达式;
(2)求s与x的函数表达式,并在图2中画出函数图象;
(3)当两人之间的距离不超过5千米时,能够用无线对讲机保持联系.并且规定:持续联系时间不少于15分钟为有效联系时间.求当两人用无线对讲机保持有效联系时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据 ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有(

A.①②③
B.②③④
C.①②④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.

(1)求证:△ADE≌△CDF;
(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);
(2)求船P到海岸线MN的距离(即PE的长);
(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步练习册答案