【题目】张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.
(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.
【答案】(1)A类男生人数为2,C类女生人数为2,补全图形见解析;(2)所选两位同学恰好是一男一女同学的概率为.
【解析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;
(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.
(1)∵被调查的总人数为(7+5)÷60%=20人,
∴A类别人数为20×15%=3人、C类别人数为20×(1-15%-60%-10%)=3,
则A类男生人数为3-1=2、C类女生人数为3-1=2,
补全图形如下:
(2)画树状图得:
∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,
∴所选两位同学恰好是一男一女同学的概率为.
科目:初中数学 来源: 题型:
【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.
(1)该商场第一批购进衬衫多少件?
(2)商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC>BC,分别以AB,BC,CA为一边向△ABC外作正方形ABDE、BCMN,CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3.
(1)猜想S1、S2、S3的大小关系.
(2)请对(1)的猜想,任选一个关系进行证明;
(3)若将图1中的Rt△ABC改为图2中的任意△ABC,若SABC=5,求出S1+S2+S3的值;
(4)若将图2中的任意△ABC改为任意凸四边形ABCD,若S△AEG+S△CNK+S△IBH+S△DFM=α,则四边形ABCD的面积为 (直接用含α的代数式表示结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在以AB为直径的半圆内,连AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法正确的是:
①AC垂直平分BF;②AC平分∠BAF;③PF⊥AB;④BD⊥AF.
A.①② B.①④ C.②④ D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形纸片,.对折矩形纸片,使与重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点.以下结论:①;②;③;④△是等边三角形; ⑤为线段上一动点,是的中点,则的最小值是.其中正确结论的序号是( ).
A. ①②④B. ①④⑤C. ①③④D. ①②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.
(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.
(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式.
(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=-x2-4x+8对称轴右侧上的动点,求△PCD的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com