精英家教网 > 初中数学 > 题目详情

【题目】解方程:

1﹣2x=6

2x﹣11=7

3x+13=5x+37

43xx=+1

【答案】1x=3;(2x=18;(3x=6;(4x=

【解析】试题分析:(1)两边都除以-2,把系数化为1即可;(2)移项,合并同类项即可;(3)移项,合并同类项,系数化为1即可;(4)合并同类项,系数化为1即可.

解:1﹣2x=6

x=﹣3

2x﹣11=7

x=7+11

x=18

3x+13=5x+37

x﹣5x=37﹣13

﹣4x=24

x=﹣6

43x﹣x=﹣+1

2x=

x=

点睛:本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016年3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)请把折线统计图(图1)补充完整;

(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列各式:(ab2=a2b2,(ab3=a3b3,(ab4=a4b4

回答下列三个问题:

1)验证:(100=   2100×100=   

2)通过上述验证,归纳得出:(abn=    abcn=   

3)请应用上述性质计算:(﹣0.1252017×22016×42015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.

当地一家蔬菜公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制订了三种方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为选择哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD O 是对角线AC 的中点,EF 过点O,AD,BC 分别相交于点E,F,GH 过点O,AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD,AE⊥BC,垂足为点E,CE=CD,FCE的中点GCD上的一点连接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的长;

(2)求证:∠CEG=∠AGE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正确的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步练习册答案