精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把类似的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

1)当均为正整数时,若,用含的式子分别表示,得:    

2)利用所探索的结论,找一组正整数填空:        

3)若,且均为正整数,求的值?

【答案】1a=m2+3n2b=2mn;(212;(3a的值为1228

【解析】

1)利用完全平方公式展开得到(m+n2=m2+3n2+2mn,从而可用mn表示ab

2)先取m=2n=1,则计算对应的ab的值,然后填空即可;

3)利用a=m2+3n22mn=6amn均为正整数可先确定mn的值,然后计算对应的a的值.

1)(m+n2=m2+3n2+2mn

a=m2+3n2b=2mn

2m=2n=1,则a=7b=4

7+4=2+2

3a=m2+3n22mn=6

amn均为正整数,

m=3n=1m=1n=3

m=3n=1时,a=9+3=12

m=1n=3时,a=1+3×9=28

a的值为1228

故答案为m2+3n22mn7421

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】PQ分别是边长为4cm的等边的边ABBC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是,设运动时间为t秒.

连接AQCP交于点M,则在PQ运动的过程中,变化吗:若变化,则说明理由,若不变,则求出它的度数;

连接PQ

秒时,判断的形状,并说明理由;

时,则______直接写出结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2

1)观察图2请你写出(a+b2、(ab2ab之间的等量关系是   

2)根据(1)中的结论,若x+y5xy,则xy   

3)拓展应用:若(2019m2+m2020215,求(2019m)(m2020)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

1)小明家到学校的路程是 米.

2)小明在书店停留了 分钟.

3)本次上学途中,小明一共行驶了 米.一共用了 分钟.

4)我们认为骑单车的速度超过 300 /分就超过了安全限度.问:在整个上学途中哪个时间段小明的骑车速度最快,最快速度为多少,在安全限度内吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E,F分别在矩形ABCD的边BC和CD上.

(1)求证:直线FG是⊙O的切线;
(2)若CD=10,EB=5,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:
请你根据图中提供的信息完成下列各题:

(1)补全条形统计图;
(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.

运用上述知识,解决下列问题:

(1)如果a-2+b+3=0,其中a、b为有理数,那么a= ,b=

(2)如果2+a-1-b=5,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为EBED;SAPD+SAPB=1+.其中正确结论的序号是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

同步练习册答案