精英家教网 > 初中数学 > 题目详情
24、如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.
(1)写出图中所有与△DCE全等的三角形,并选择其中一对说明全等的理由;
(2)探究当等腰梯形ABCD的高DF是多少时,对角线AC与BD互相垂直?请回答并说明理由.
分析:(1)与△DCE全等的三角形有:△CDA≌△DCE,△BAD≌△DCE,可以用全等三角形的判定方法来进行验证.
(2)需要根据已知条件及等腰梯形的性质,平行四边形的性质得出BF=FE=3,因为DF=3,则∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,从而推出∠BDE=∠BDF+∠EDF=90°,根据平行的性质得出∠BGC=∠BDE=90°,即AC⊥BD.
解答:解:(1)△CDA≌△DCE,△BAD≌△DCE;(2分)
①△CDA≌△DCE的理由是:
∵AD∥BC,
∴∠CDA=∠DCE.(3分)
又∵DA=CE,CD=DC,(4分)
∴△CDA≌△DCE.(5分)
②△BAD≌△DCE的理由是:
∵AD∥BC,
∴∠CDA=∠DCE.(3分)
又∵四边形ABCD是等腰梯形,
∴∠BAD=∠CDA,
∴∠BAD=∠DCE.(4分)
又∵AB=CD,AD=CE,
∴△BAD≌△DCE.(5分)

(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.(6分)
理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,
∴AC=DB.
又∵AD=CE,AD∥BC,
∴四边形ACED是平行四边形,(7分)
∴AC=DE,AC∥DE.
∴DB=DE.(8分)
则BF=FE,
又∵BE=BC+CE=BC+AD=4+2=6,
∴BF=FE=3. (9分)
∵DF=3,
∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,
∴∠BDE=∠BDF+∠EDF=90°,
又∵AC∥DE
∴∠BGC=∠BDE=90°,即AC⊥BD.(10分)
(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)
点评:此题考查了全等三角形有判定方法及等腰梯形的性质,要求学生在做题时要灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案