精英家教网 > 初中数学 > 题目详情
9.如图,点A表示的实数是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$-\sqrt{5}$D.$-\sqrt{3}$

分析 根据勾股定理可求得OA的长为$\sqrt{5}$,再根据点A在原点的左侧,从而得出点A所表示的数.

解答 解:如图,OB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,

∵OA=OB,
∴OA=$\sqrt{5}$,
∴点A在数轴上表示的实数是-$\sqrt{5}$,
故选:C.

点评 本题考查了实数和数轴,以及勾股定理,原点左边的数是负数.解决本题的关键是利用勾股定理求出OB的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.分解因式:a3-4a.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:$\frac{2a}{{{a^2}-16}}-\frac{1}{a-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下面哪个点在函数y=$\frac{1}{2}$x+1的图象上(  )
A.(-2,0)B.(-2,1)C.(2,0)D.(2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,矩形OABC中,OA在y轴的负半轴上,OC在x轴的正半轴上,OA=1,OC=4,E是AB的中点,将矩形沿OE折叠,点A与点F重合,延长OF、BC交于点H,G是射线AB上一点,将△OAG绕点O旋转,使得点A落在OE上,记旋转后的三角形为△OA′G′,A′G′与OH交于点M,若∠MHG′=∠MHB,则AG的长为$\frac{2+20\sqrt{5}}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.将下列各多项式因式分解
(1)15a2+5a
(2)x5-x3
(3)a3b-4a2b2+4ab3
(4)1-x2-y2+x2y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G落在点A、E之间,连接EF、CF.则以下四个结论:
①CG⊥AE;
②△CDF≌△EBC;
③∠CDF=∠EAF;
④△ECF是等边三角形.
其中一定正确的是②③④.(把正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在Rt△ABC中,∠ACB=90°,经过点B的直线l(l不与直线AB重合)与直线BC的夹角等于∠ABC,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.
(1)如图1,当点E与点B重合时,若AE=4,判断以C点为圆心CD长为半径的圆C与直线AB的位置关系并说明理由;
(2)如图2,当点E在DB延长线上时,求证:AE=2CD;
(3)记直线CE与直线AB相交于点F,若$\frac{CF}{EF}=\frac{5}{6}$,CD=4,求BD的长.

查看答案和解析>>

同步练习册答案