精英家教网 > 初中数学 > 题目详情

如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是       

 

【答案】

12

【解析】解:∵⊙O2的面积为π,

∴⊙O2的半径是1,

∵AB和AH是⊙O1的切线,

∴AB=AH,

设⊙O2的半径是R,

连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,

∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC.DA,∠ADC=60°,

∴D.O2、O1三点共线,∠CDO1=30°,

∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,

∴四边形CFO2E是矩形,

∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,

∴DO2=2O2E=2,∠HAO1=60°,R+1=2(R﹣1),

解得:R=3,

即DO1=2+1+3=6,

在Rt△CDO1中,由勾股定理得:CD=3

∵∠HO1A=90°﹣60°=30°,HO1=3,

∴AH==AB,

∴四边形ABCD的面积是:×(AB+CD)×BC=×(+3)×(3+3)=12

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=
35
,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浦口区一模)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=70°,BC=2,则图中阴影部分面积为
7
18
π
7
18
π

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•澄海区模拟)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=2,则图中阴影部分的面积为
π
3
π
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•眉山)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为
4
3
π
4
3
π
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是
12
3
12
3

查看答案和解析>>

同步练习册答案