精英家教网 > 初中数学 > 题目详情
(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是
12
3
12
3
分析:设⊙O1的半径是R,求出⊙O2的半径是1,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,推出D、O2、O1三点共线,∠CDO1=30°,求出四边形CFO2E是矩形,推出O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,推出R+1=2(R-1),求出R=3,求出DO1,在Rt△CDO1中,由勾股定理求出CD,求出AH=
3
=AB,根据梯形面积公式得出
1
2
×(AB+CD)×BC,代入求出即可.
解答:解:∵⊙O2的面积为π,设⊙O2的半径是r,
则π×r2
∴⊙O2的半径是1,
∵AB和AH是⊙O1的切线,
∴AB=AH,
设⊙O1的半径是R,
连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,
∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°,
∴D、O2、O1三点共线,∠CDO1=30°,
∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,
∴四边形CFO2E是矩形,
∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,
∴DO2=2O2E=2,∠HAO1=60°,
∵O1O2=2O1F(在直角三角形中,30度角所对的直角边等于斜边的一半),
又∵O1F=R-1,O1O2=R+1,
∴R+1=2(R-1),
解得:R=3,
即DO1=2+1+3=6,
在Rt△CDO1中,由勾股定理得:CD=3
3

∵∠HO1A=90°-60°=30°,HO1=3,
∴AH=
3
=AB,
∴四边形ABCD的面积是:
1
2
×(AB+CD)×BC=
1
2
×(
3
+3
3
)×(3+3)=12
3

故答案为:12
3
点评:本题考查的知识点是勾股定理、相切两圆的性质、含30度角的直角三角形、矩形的性质和判定,本题主要考查了学生能否运用性质进行推理和计算,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=
45

(1)求过A、C、D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•攀枝花)先化简,再求值:(x+1-
3
x-1
x2-4x+4
x-1
,其中x满足方程:x2+x-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•攀枝花)下列说法中,错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•攀枝花)底面半径为1,高为
3
的圆锥的侧面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•攀枝花)某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示,但不完整的统计图.根据图示信息,解答下列问题:

(1)求被抽查学生人数及课外阅读量的众数;
(2)求扇形统计图汇总的a、b值;
(3)将条形统计图补充完整;
(4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?

查看答案和解析>>

同步练习册答案