【题目】已知二次函数.
(1)该二次函数图象的对称轴是x ;
(2)若该二次函数的图象开口向下,当时, 的最大值是2,求当时, 的最小值;
(3)若对于该抛物线上的两点, ,当, 时,均满足,请结合图象,直接写出的最大值.
【答案】(1)2;(2)-6;(3)4.
【解析】试题分析:
(1)由二次函数的对称轴为直线即可求出的对称轴为直线: ;
(2)由题意结合(1)中所得抛物线的对称轴为直线可得,当时, 最大=,由此可解得;由对称轴把分为和 两个部分,结合对称轴两侧函数的增减性即可求得当时, 的最小值;
(3)由题意可得抛物线和x轴交于点(1,0)和(3,0);分a>0和a<0两种情况画出图象结合已知条件进行分析解答即可;
试题解析:
(1)∵二次函数图象的对称轴为直线,
∴二次函数的图象的对称轴为直线: ;
(2)∵ 该二次函数的图象开口向下,且对称轴为直线,
∴ 当时,y取到在上的最大值为2.
∴.
∴, .
∵ 当时,y随x的增大而增大,
∴ 当时,y取到在上的最小值.
∵ 当时,y随x的增大而减小,
∴ 当时,y取到在上的最小值.
∴ 当时,y的最小值为.
(3)∵二次函数,
∴二次函数的图象交轴于点(1,0)和(3,0),由此分和画出图象如下:
①如图,当时,抛物线开口向上,由题意可知,此时点Q在直线的右侧,由图可知,此时不存t的值,使当, 时,始终满足成立;
②当时,抛物线开口向下,由题意可知,此时点Q在直线的右侧,由图可知,当点P在抛物线上点M和点N之间的部分图象上时,存在t,使当, 时,始终满足成立;此时,点M1关于抛物线对称轴的对称点N的横坐标为:-1,故,解得,所以的最大值为.
综合①②可得,满足条件的的最大值为.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) | 2 |
种植树木利润y1(万元) | 4 |
种植花卉利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数(x<0)与y=ax+b的图象交于点A(﹣1,n)和点B(﹣2,1).
(1)求k,a,b的值;
(2)直线x=m与(x<0)的图象交于点P,与y=﹣x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲.乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图1所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A90°,ABAC.
(1)如图1,△ABC的角平分线BD,CE交于点Q,请判断“”是否正确:________(填“是”或“否”);
(2)点P是△ABC所在平面内的一点,连接PA,PB,且PB PA.
①如图2,点P在△ABC内,∠ABP30°,求∠PAB的大小;
②如图3,点P在△ABC外,连接PC,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com