精英家教网 > 初中数学 > 题目详情

如图所示,在?ABCD中,E为AD中点,CE交BA的延长线于F.
(1)试证明:AB=AF;
(2)若BC=2AB,∠FBC=70°,求∠EBC的度数.

(1)证明:在?ABCD中,CD=AB,CD∥AB,
∴∠DCE=∠F.
∵E为AD的中点,
∴DE=AE.
∵∠DEC=∠AEF,
∴△DEC≌△AEF(AAS).
∴DC=AF.
∴AB=AF.

(2)解:由(1)可知BF=2AB,EF=EC
∵BC=2AB,
∴BF=BC.
∴△FBE≌△CBE
∴BE平分∠CBF.
∴∠EBC=∠FBC=70°=35°.
分析:(1)证明AB=AF,需要找第三个量过渡,由平行四边形的性质可知:AB=CD,只需要证明AF=CD即可,可考虑证明△DEC≌△AEF;
(2)由(1)可知FB=2AB,已知BC=2AB,所以△FBC为等腰三角形,又EF=EC,根据等腰三角形“三线合一”这一性质解题即可.
点评:本题主要考查了平行四边形的基本性质,并利用性质解题.解题关键是利用平行四边形的性质结合三角形全等来解决有关的计算和证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案