精英家教网 > 初中数学 > 题目详情

【题目】宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取ADBC的中点EF,连接EFDF,作∠DFC,的平分线,交AD的延长线于点H,作HGBC,交I3C的延长线于点G,则下列矩形是黄金矩形的是( )

A. 矩形ABFE B. 矩形EFCD C. 矩形EFGH D. 矩形DCGH

【答案】C

【解析】设正方形ABCD的边长为2,则DE=1

在直角三角形DFC中,DF=.

AHBG

∴∠AHF=∠HFG.

FH平分DFC

∴∠DFH=∠HFG

∴∠DFH=∠AHF

DF=DH=

EH=1+

矩形EFGH为黄金矩形.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙与菱形在平面直角坐标系中,点的坐标为的坐标为,点的坐标为,点轴上,且点在点的右侧.

)求菱形的周长.

)若⊙沿轴向右以每秒个单位长度的速度平移,菱形沿轴向左以每秒个单位长度的速度平移,设菱形移动的时间为(秒),当⊙相切,且切点为的中点时,连接,求的值及的度数.

)在()的条件下,当点所在的直线的距离为时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,ADBC,连接对角线AC

1)在边AD上确定一点E,使EA=EC;在边BC上确定一点F,使FA=FC;(尺规作图,保留作图痕迹,不写作法)

2)在(1)的条件下,连接AFCE.求证:四边形AFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数的图象经过第一、二、三象限,且与反比例函数图象相交于两点,与轴交于点,与轴交于点 且点横坐标是点纵坐标的2倍.

1)求反比例函数的解析式;

2)设点横坐标为 面积为

的函数关系式,并求出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高高地路灯挂在路边的上方,高傲而明亮,小明拿着一根米长的竹竿,想量一量路灯的高度,直接量是不可能的,于是,他走到路灯旁的一个地方,竖起竹竿,这时,他量了一下竹竿的影长正好是米,他沿着影子的方向走,向远处走出两根竹竿的长度(即米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,原来路灯有米高呀!”(如图所示)同学们,你觉得小明的判断对吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCAE平分∠BADBC于点EAEDE,∠1+2=90°MN分别是BACD延长线上的点,∠EAM和∠EDN的平分线交于点F,下列结论:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F为定值.其中结论正确的有(

A. 4B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C60米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53,求楼房AC的高度(参考数据:sin53=, cos53=, tan53= ≈1.732,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x,y的方程组

1请直接写出方程的所有正整数解

2若方程组的解满足x+y=0,m的值

3无论实数m取何值,方程x2y+mx+5=0总有一个固定的解,请直接写出这个解?

查看答案和解析>>

同步练习册答案