精英家教网 > 初中数学 > 题目详情

若A(x1,y1)、B(x2,y2)是一次函数y=a2x﹣2图象上不同的两点,记m=(x1﹣x2)( y1﹣y2),则m      0.(填“>”或“<”)


> 

【考点】二次函数图象上点的坐标特征.

【分析】根据一次函数图象上点的坐标特征表示出 y1、y2,然后整理得到m的表达式,再根据平方数非负数的性质解答.

【解答】解:∵A、B是一次函数y=a2x﹣2图象上不同的两点,

∴y1=a2x1﹣2,y2=a2x2﹣2,

∴m=(x1﹣x2)( y1﹣y2),

=(x1﹣x2)(a2x1﹣2﹣a2x2+2),

=a2(x1﹣x22

∵A、B是一次函数图象上不同的两点,

∴a≠0,x1≠x2

∴m>0.

故答案为:>.

【点评】本题考查了一次函数图象上点的坐标特征,平方数非负数的性质,用点的横坐标表示出m是解题的关键.

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下列关于x的方程一定有实数解的是(    )

(A)     (B)     (C)    (D)

查看答案和解析>>

科目:初中数学 来源: 题型:


EABCDAD上一点,将ABE沿BE翻折得到FBE,点FBD上,且EFDF.若∠C=52°,那么∠ABE=__________

查看答案和解析>>

科目:初中数学 来源: 题型:


已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,

(1)证明四边形ABDF是平行四边形;

(2)若AF=DF=5,AD=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:|﹣|+(﹣1)2014﹣2cos45°+

查看答案和解析>>

科目:初中数学 来源: 题型:


计算: =      

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.

(1)求点M的坐标(用含t的代数式表示).

(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.

(3)当t为何值时,四边形BNDM的面积最小.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


下面的图案中,既是轴对称图形又是中心对称图形的是(  )

A.①     B.②     C.③     D.④

查看答案和解析>>

科目:初中数学 来源: 题型:


下面是用棋子摆成的“上”字:

查看答案和解析>>

同步练习册答案