精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.

(1)求过O,B,E三点的二次函数关系式;
(2)求直线DE的解析式和点M的坐标;
(3)若反比例函数y= (x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.

【答案】
(1)

解:设过O,B,E三点的二次函数关系式为:y=ax2+bx+c;

把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,得

解得:

∴过O,B,E三点的二次函数关系式为:y=﹣ x2+ x


(2)

解:设直线DE的解析式为:y=kx+b,

∵点D,E的坐标为(0,3)、(6,0),

, 解得

∴直线DE的解析式为:y=﹣ x+3;

∵点M在AB边上,B(4,2),而四边形OABC是矩形,

∴点M的纵坐标为2.

又∵点M在直线y=﹣ x+3上,

∴2=﹣ x+3.

∴x=2.

∴M(2,2);


(3)

解:∵y= (x>0)经过点M(2,2),

∴m=4.

∴该反比例函数的解析式为:y=

又∵点N在BC边上,B(4,2),

∴点N的横坐标为4.

∵点N在直线y=﹣ x+3上,

∴y=1.

∴N(4,1).

∵当x=4时,y= =1,

∴点N在函数y= 的图象上


【解析】(1)首先把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,可得 ,解此方程即可求得答案;(2)首先设直线DE的解析式为:y=kx+b,然后将点D,E的坐标代入即可求得直线DE的解析式,又由点M在AB边上,B(4,2),而四边形OABC是矩形,可得点M的纵坐标为2,继而求得点M的坐标;(3)由反比例函数y= (x>0)的图象经过点M,即可求得该反比例函数的解析式,又由点N在BC边上,B(4,2),可得点N的横坐标为4.然后由点N在直线y=﹣ x+3上,求得点N的坐标,即可判断点N是否在该函数的图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.
(1)求甲、乙两队工作效率分别是多少?
(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,双曲线y= (x>0)与直线EF交于点A,点B,且AE=AB=BF,连结AO,BO,它们分别与双曲线y= (x>0)交于点C,点D,则:

(1)①AB与CD的位置关系是
②四边形ABDC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;
(2)若a= ,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.

(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)x2+4x+1=0
(2)(x﹣1)2+x=1
(3)3x2﹣2x﹣4=0
(4)x2﹣7x+12=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有(

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).

(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且SBOC=2,求点C的坐标.

查看答案和解析>>

同步练习册答案