【题目】已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;
(2)若a= ,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
【答案】
(1)
解:当a=b=1,c=﹣1时,抛物线为:y=3x2+2x﹣1,
∵方程3x2+2x﹣1=0的两个根为:x1=﹣1,x2= .
∴该抛物线与x轴公共点的坐标是:(﹣1,0)和( ,0)
(2)
解:a= ,c﹣b=2,则抛物线可化为:y=x2+2bx+b+2,
其对称轴为:x=﹣b,
当x=﹣b<﹣2时,即b>2,则有抛物线在x=﹣2时取最小值为﹣3,
此时﹣3=(﹣2)2+2×(﹣2)b+b+2,
解得:b=3,符合题意,
当x=﹣b>2时,即b<﹣2,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,
解得:b=﹣ ,不合题意,舍去.
当﹣2≤﹣b≤2时,即﹣2≤b≤2,则有抛物线在x=﹣b时,取最小值为﹣3,
此时﹣3=(﹣b)2+2×(﹣b)b+b+2,
化简得:b2﹣b﹣5=0,
解得:b1= (不合题意,舍去),b2= .
综上:b=3或b=
(3)
解:由y=1得3ax2+2bx+c=1,
△=4b2﹣12a(c﹣1),
=4b2﹣12a(﹣a﹣b),
=4b2+12ab+12a2,
=4(b2+3ab+3a2),
=4[(b+ a)2+ a2],
∵a≠0,△>0,
所以方程3ax2+2bx+c=1有两个不相等实数根,
即存在两个不同实数x0,使得相应y=1
【解析】(1)直接将a=b=1,c=﹣1代入求出即可;(2)利用当x=﹣b<﹣2时,即b>2,此时﹣3=(﹣2)2+2×(﹣2)b+b+2;当x=﹣b>2时,即b<﹣2,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2;当﹣2≤﹣b≤2时,即﹣2≤b≤2,则有抛物线在x=﹣b时,取最小值为﹣3,分别求出符合题意的答案即可;(3)由y=1得3ax2+2bx+c=1,则△=4b2﹣12a(c﹣1),求出△的符号得出答案即可.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法: ①关于x的方程x+ =c+ 的解是x=c(c≠0);
②方程组 的正整数解有2组;
③已知关于x,y的方程组 ,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;
其中正确的有( )
A.②③
B.①②
C.①③
D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求过O,B,E三点的二次函数关系式;
(2)求直线DE的解析式和点M的坐标;
(3)若反比例函数y= (x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将平行四边形ABCD的边AB延长至点E,使BE=AB,连接DE,EC,DE,交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)证明四边形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).
(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com