精英家教网 > 初中数学 > 题目详情

【题目】先化简,再求代数式的值:( )÷ ,其中sin230°<a<tan260°,请你取一个合适的整数作为a的值代入求值.

【答案】解:原式= =
=
∵sin30°= ,tan60°=
<a<3,
∵a≠1,
∴整数a为2,
当a=2时,原式= =
【解析】先把括号内通分和除法运算化为乘法运算,再约分得到原式= ,然后根据特殊角的三角函数值得到 <a<3,从而得到满足条件的整数a为2,再把a=2代入 中计算即可.
【考点精析】解答此题的关键在于理解特殊角的三角函数值的相关知识,掌握分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=(
A.2π
B. π
C. π
D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下说法: ①关于x的方程x+ =c+ 的解是x=c(c≠0);
②方程组 的正整数解有2组;
③已知关于x,y的方程组 ,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;
其中正确的有(
A.②③
B.①②
C.①③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则 的值为 的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;
(2)若a= ,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.

(1)若点E平分线段PF,则此时AQ的长为多少?
(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?
(3)在“线段CE”、“线段QF”、“点A”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC,DE∥AB.证明:

(1)AE=DC;
(2)四边形ADCE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早 小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:

(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.

查看答案和解析>>

同步练习册答案