精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=(
A.2π
B. π
C. π
D. π

【答案】B
【解析】解:如图,假设线段CD、AB交于点E, ∵AB是⊙O的直径,弦CD⊥AB,
∴CE=ED=2
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S阴影=S扇形ODB﹣SDOE+SBEC= OE×DE+ BECE= ﹣2 +2 =
故选B.

根据垂径定理求得CE=ED=2 ,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣SDOE+SBEC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为(
A.6cm
B.7cm
C.8cm
D.9cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=k1x+b与反比例函数y= 的图象交于第一象限内的P( ,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:﹣14+ sin60°+( 2﹣(π﹣ 0
(2)先化简,再求值:(1﹣ )÷ ,其中x= ﹣1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)求A、B两点的坐标及抛物线的对称轴;
(2)求直线l的函数表达式(其中k、b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为 ,求a的值;
(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求代数式的值:( )÷ ,其中sin230°<a<tan260°,请你取一个合适的整数作为a的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=4,SABC=4 ,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为

查看答案和解析>>

同步练习册答案