精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)求A、B两点的坐标及抛物线的对称轴;
(2)求直线l的函数表达式(其中k、b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为 ,求a的值;
(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

【答案】
(1)

解:当y=0时,ax2﹣2ax﹣3a=0,

解得:x1=﹣1,x2=3,

∴A(﹣1,0),B(3,0),

对称轴为直线x= =1


(2)

解:∵直线l:y=kx+b过A(﹣1,0),

∴0=﹣k+b,

即k=b,

∴直线l:y=kx+k,

∵抛物线与直线l交于点A,D,

∴ax2﹣2ax﹣3a=kx+k,

即ax2﹣(2a+k)x﹣3a﹣k=0,

∵CD=4AC,

∴点D的横坐标为4,

∴﹣3﹣ =﹣1×4,

∴k=a,

∴直线l的函数表达式为y=ax+a


(3)

解:过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),

则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,

∴SACE=SAFE﹣SCEF= (ax2﹣3ax﹣4a)(x+1)﹣ (ax2﹣3ax﹣4a)x= (ax2﹣3ax﹣4a)= a(x﹣ 2 a,

∴△ACE的面积的最大值=﹣ a,

∵△ACE的面积的最大值为

∴﹣ a=

解得a=﹣


(4)

解:以点A、D、P、Q为顶点的四边形能成为矩形,

令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,

解得:x1=1,x2=4,

∴D(4,5a),

∵抛物线的对称轴为直线x=1,

设P(1,m),

①若AD是矩形ADPQ的一条边,

则易得Q(﹣4,21a),

m=21a+5a=26a,则P(1,26a),

∵四边形ADPQ是矩形,

∴∠ADP=90°,

∴AD2+PD2=AP2

∴52+(5a)2+32+(26﹣5a)2=22+(26a)2

即a2=

∵a<0,

∴a=﹣

∴P(1,﹣ );

②若AD是矩形APDQ的对角线,

则易得Q(2,﹣3a),

m=5a﹣(﹣3a)=8a,则P(1,8a),

∵四边形APDQ是矩形,

∴∠APD=90°,

∴AP2+PD2=AD2

∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2

即a2=

∵a<0,

∴a=﹣

∴P(1,﹣4),

综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣ )或(1,﹣4).


【解析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①SABF=SADF;②SCDF=4SCEF;③SADF=2SCEF;④SADF=2SCDF , 其中正确的是(
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=(
A.2π
B. π
C. π
D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.

类别

频数(人数)

频率

小说

0.5

戏剧

4

散文

10

0.25

其他

6

合计

1


根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下说法: ①关于x的方程x+ =c+ 的解是x=c(c≠0);
②方程组 的正整数解有2组;
③已知关于x,y的方程组 ,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;
其中正确的有(
A.②③
B.①②
C.①③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则 的值为 的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.

(1)若点E平分线段PF,则此时AQ的长为多少?
(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?
(3)在“线段CE”、“线段QF”、“点A”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.

(1)将图补充完整;
(2)本次共抽取员工人,每人所创年利润的众数是 , 平均数是
(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?

查看答案和解析>>

同步练习册答案