【题目】对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).
(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.
【答案】
(1)
解:∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),
∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4)
(2)
解:①连接CM,如图1:
由中心对称可知,AM=BM,
由轴对称可知:BM=CM,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACM+∠MCB=90°,
∴∠ACB=90°,
∴△ABC是直角三角形;
②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
由①得∠ACE=90°,
∴∠AEC=45°,
∴E点坐标为(13,0),
设直线BE的解析式为y=kx+b,
∵C,E点在直线上,
可得: ,
解得: ,
∴y=﹣x+13,
∵点B由点A经n次斜平移得到,
∴点B(n+1,2n),由2n=﹣n﹣1+13,
解得:n=4,
∴B(5,8)
【解析】(1)根据平移的性质得出点A平移的坐标即可;(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求该抛物线与x轴的交点坐标;
(2)若a= ,c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形;
②当AM的值为时,四边形AMDN是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早 小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:
(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:
(1)这次抽查了名学生;
(2)所抽查的学生一周平均参加体育锻炼多少小时?
(3)已知该校有1200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:45°<∠A<90°,则下列各式成立的是( )
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.
(1)求证:AP=AB;
(2)若OB=4,AB=3,求线段BP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com