精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

【答案】
(1)

解:∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,

∴0=﹣(﹣1﹣1)2+c,得c=4,

∴抛物线解析式为:y=﹣(x﹣1)2+4,

令x=0,得y=3,∴C(0,3);

令y=0,得x=﹣1或x=3,∴B(3,0).


(2)

解:△CDB为直角三角形.理由如下:

由抛物线解析式,得顶点D的坐标为(1,4).

如答图1所示,

过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.

过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.

在Rt△OBC中,由勾股定理得:BC=

在Rt△CND中,由勾股定理得:CD=

在Rt△BMD中,由勾股定理得:BD=

∵BC2+CD2=BD2

∴△CDB为直角三角形(勾股定理的逆定理).


(3)

解:设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),

解得k=﹣1,b=3,

∴y=﹣x+3,

直线QE是直线BC向右平移t个单位得到,

∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;

设直线BD的解析式为y=mx+n,∵B(3,0),D(1,4),

解得:m=﹣2,n=6,

∴y=﹣2x+6.

连接CQ并延长,射线CQ交BD于点G,则G( ,3).

在△COB向右平移的过程中:

(I) 当0<t≤ 时,如答图2所示:

设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.

设QE与BD的交点为F,则: ,解得 ,∴F(3﹣t,2t).

S=SQPE﹣SPBK﹣SFBE= PEPQ﹣ PBPK﹣ BEyF= ×3×3﹣ (3﹣t)2 t2t= t2+3t;

(II) 当 <t<3时,如答图3所示:

设PQ分别与BC、BD交于点K、点J.

∵CQ=t,

∴KQ=t,PK=PB=3﹣t.

直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t,

∴J(t,6﹣2t).

S=SPBJ﹣SPBK= PBPJ﹣ PBPK= (3﹣t)(6﹣2t)﹣ (3﹣t)2= t2﹣3t+

综上所述,S与t的函数关系式为:

S=


【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标;(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形;(3)△COB沿x轴向右平移过程中,分两个阶段:
(I)当0<t≤ 时,如答图2所示,此时重叠部分为一个四边形;
(II)当 <t<3时,如答图3所示,此时重叠部分为一个三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】与题干中平面图形有相同对称性的平面图形是( ).

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 ①②③ .(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表: 抽取的200名学生海选成绩分组表

组别

海选成绩x

A组

50≤x<60

B组

60≤x<70

C组

70≤x<80

D组

80≤x<90

E组

90≤x<100

请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 , 表示C组扇形的圆心角θ的度数为度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.

(1)求证:△BAD≌△CAE;

(2)请判断BD、CE有何大小、位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(  )
A.80°
B.70°
C.40°
D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师给爱好学习的小兵和小鹏提出这样一个问题:如图1,在ABC中,AB=AC点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CFAB,垂足为F.求证:PD+PE=CF.

小兵的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PE=CF.

小鹏的证明思路是:如图2,过点P作PGCF,垂足为G,先证△GPC≌△ECP,可得:PE=CG,而PD=GF,则PD+PE=CF.

请运用上述中所证明的结论和证明思路完成下列两题:

(1)如图3,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值;

(2)如图4,P是边长为6的等边三角形ABC内任一点,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.

1)小李考了60分,那么小李答对了多少道题?

2)小王获得二等奖(7585分),请你算算小王答对了几道题?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,A=36°C=72°ABC的平分线交ACD,则图中共有等腰三角形(  )

A0 B1 C2 D3

查看答案和解析>>

同步练习册答案