精英家教网 > 初中数学 > 题目详情

如图,点O是直线AB上一点,∠BOC=53°18′,OD是∠AOC的平分线,求∠BOD的度数.

解:∵∠BOC=53°18′,
∴∠AOC=180°-53°18′=126°42′,
∵OD是∠AOC的平分线,
∴∠COD=∠AOC=×126°42′=63°21′,
∴∠BOD=63°21′+53°18′=116°39′.
分析:首先根据邻补角的定义可得到∠AOC的度数,再根据角平分线定义可算出∠COD,再根据∠DOB=∠COD+∠BOC代入度数进行计算即可.
点评:此题主要考查了角的计算,以及角平分线定义,关键是根据图形看准角的和差关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,点O是直线AB上一点,且∠AOC=135度,则∠BOC=
45
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是直线AB上一点,∠AOC=40°,OD平分∠AOC,∠COE=70°.
(1)请你说明DO⊥OE;
(2)OE平分∠BOC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,点O是直线AB上一点,OC平分∠AOB,在直线AB另一侧以O为顶点作∠DOE=90°
(1)若∠AOE=48°,那么∠BOD=
42°
;∠AOE与∠DOB的关系是
互余

(2)∠AOE与∠COD有什么数量关系?请写出你的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,点O是直线AB、CD的交点,∠AOE=∠COF=90°.如果∠EOF=32°,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,点O是直线AB、CD的交点,∠AOE=∠COF=90°
①如果∠EOF=32°,求∠AOD的度数;
②如果∠EOF=x°,求∠AOD的度数.

查看答案和解析>>

同步练习册答案