精英家教网 > 初中数学 > 题目详情
在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.
分析:在△ABC中,设AB=c,AC=b,BC=16,中线AM=10,高线AD=9,∠BAC=α,由余弦定理及正弦定理列方程求cosα,再由面积公式求sinα,利用tanα=
sinα
cosα
求解.
解答:精英家教网解:如图,在△ABC中,设AB=c,AC=b,BC=16,中线AM和高线AD分别为10和9,∠BAC=α,∠AMC=θ,从而∠AMB=180°-θ,由题意得,
b2+c2-2bccosα=162
2(b2+c2)=162+202
,解得bccosα=36,
又由
1
2
bcsinα=
1
2
×9×16,得bcsinα=144,
故tanα=
sinα
cosα
=4.
点评:本题考查了用余弦定理及正弦定理求三角函数值的方法.关键是根据余弦定理及正弦定理求所求角的余弦值及正弦值,熟悉正切与正弦、余弦的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.
精英家教网
(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:
三三角形角形 角的已知量
a
b
 
b+c
a
 
图2 ∠A=2∠B=90°     
图3 ∠A=2∠B=60°     
(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;
(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长. (直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=
60°
60°
;AC=
20
6
20
6

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,
6
≈2.449

查看答案和解析>>

科目:初中数学 来源: 题型:

我们都知道,在等腰三角形中.有等边对等角(或等角对等边),那么在不等腰三角形中边与角的大小关系又是怎样的呢?让我们来探究一下.
如图1,在△ABC中,已知AB>AC,猜想∠B与∠C的大小关系,并证明你的结论;
证明:猜想∠C>∠B,对于这个猜想我们可以这样来证明:
在AB上截取AD=AC,连接CD,
∵AB>AC,∴点D必在∠BCA的内部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一个外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究过程是研究图形中不等量关系证明的一种方法,将不等的线段转化为相等的线段,由此解决问题,体现了数学的转化的思想方法.请你仿照类比上述方法,解决下面问题:
(1)如图2,在△ABC中,已知AC>BC,猜想∠B与∠A的大小关系,并证明你的结论;
(2)如图3,△ABC中,已知∠C>∠B,猜想AB与AC大小关系,并证明你的结论;
(3)根据前面得到的结果,请你总结出三角形中边、角不等关系的一般性结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读与证明:在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等.如图①,在△ABC中,如果∠B=∠C,那么AB=AC,这一结论可以说明如下:
解:过点A作AD⊥BC于D,则∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
请你仿照上述方法在图②中再选一种方法说明以上结论.
操作:如图③,点O为线段MN的中点,直线PQ与MN相交于点O,过点M、N作一组平行线分别与PQ交于点M′、N′,则线段MM′一定等腰NN′.想一想,为什么?
根据上述阅读与证明的结论以及操作得到的经验完成下列探究活动.探究:如图④,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列结论:
①三角形至多有二条高在三角形的外部
②一个多边形的边数每增加一条,这个多边形的内角和就增加360°;
③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行.
④三角形的一个外角等于两个内角的和;
⑤在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;
⑥一个三角形中至少有两个锐角 
其中错误结论有(  )

查看答案和解析>>

同步练习册答案