精英家教网 > 初中数学 > 题目详情

已知△ABC中,AB=3,∠BAC=120°,AC=1,D为AB延长线上一点,BD=1,点E在∠BAC的平分线上,且△ADE是等边三角形,则点C到BE的距离为________.


分析:首先利用等边三角形的性质得出对应边、角之间的关系,进而得出△DBE≌△ACE,进而得出△CBE是等边三角形,再利用勾股定理以及锐角三角函数关系得出BE以及CN的长.
解答:解:连接CE,过点C作CN⊥BE于点N,过点B作BF⊥DE于点F,
∵△ADE是等边三角形,
∴∠D=∠DAE=∠DEA=60°,AE=DE=AB,
∵∠BAC=120°,
∴∠EAC=60°,
在△DBE和△ACE中

∴△DBE≌△ACE(SAS),
∴∠AEC=∠DEB,EC=BE,
∵∠DEA=60°,
∴∠BEC=60°,
∴△CBE是等边三角形,
∵BD=1,∠D=60°,
∴BF=1×sin60°=,DF=BD=
∴EF=4-=
∴BE==
∴CE=
∴CN=CE×sin60°=×=
故答案为:
点评:此题主要考查了全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理、锐角三角函数的概念,根据已知得出等边△CBE的边长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案