精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A是反比例函数y的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边ABC使点C落在第二象限,且边BCx轴于点D,若ACDABD的面积之比为12,则点C的坐标为__

【答案】(﹣6).

【解析】

CMODMAEODE,作DFABF,连接CO,根据等高的三角形的面积比等于底边的比,可得DB=2CD,由ABC是等边三角形,且AO=BO可得COABCO=AO=BO,由DFCO可得OF=OBDF=OB,根据AOE∽△DOF 可得AE=2OE,根据AE×OE=2,可求A点坐标,再根据CMO∽△AOE 可求C点坐标.

如图,作CMODMAEODE,作DFABF,连接CO

根据题意得:AO=BO

SACDSADB=12

CDDB=12DB=2CD

∵△ABC为等边三角形且AO=BO

∴∠CBA=60°COABDFAB

DFCO

DF=COBF=BO,即FO=BO

∵∠CBA=60°COAB

CO=BO

DF=BO

∵∠DOF=AOE,∠DFO=AEO=90°

∴△DFO∽△AOE

AE=2OE

∵点A是反比例函数y=的图象在第一象限上的动点

AE×OE=2

AE=2OE=1

∵∠COM+AOE=90°,∠AOE+EAO=90°

∴∠COM=EAO,且∠CMO=AEO=90°

∴△COM∽△AOE

CM=MO=6

M在第二象限

C-6

故答案为:(-6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=-xb与反比例函数yx0)的图象交于点A26)和点Bm1

1)求一次函数和反比例函数的解析式;

2)点Ey轴上一个动点,若SAEB5,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+ca≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则下列结论:①4ac﹣b202a﹣b=0a+b+c0④点Mx1y1)、Nx2y2)在抛物线上,若x1x2﹣1,则y1y2abc0.其中正确结论的个数是(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°AB=ACAB是⊙O的直径,⊙OBC于点DDEAC于点EBE交⊙O于点F,连接AFAF的延长线交DE于点P

1)求证:DE是⊙O的切线;

2)求tanABE的值;

3)若OA=2,求线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】14分)如图,已知抛物线)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;

(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;

(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点EF.过点EEG∥BC,交ABG,则图中相似三角形有( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知ABC中,AB5BC3AC4PQABP点在AC上(与AC不重合),QBC上.

1)当PQC的面积与四边形PABQ的面积相等时,求CP的长;

2)当PQC的周长与四边形PABQ的周长相等时,求CP的长;

3)试问:在AB上是否存在一点M,使得PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD平分∠BACBC于点D.点EF分别在边ABAC上,且BEAFFGAB交线段AD于点G,连接BGEF

1)求证:四边形BGFE是平行四边形;

2)若ABG∽△AGFAB10AG6,求线段BE的长.

查看答案和解析>>

同步练习册答案