精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点EF.过点EEG∥BC,交ABG,则图中相似三角形有( )

A. 4B. 5C. 6D. 7

【答案】B

【解析】

试题根据平行四边形的性质得出AD∥BCAB∥CDAD=BCAB=CD∠D=∠ABC,推出△ABC≌△CDA,即可推出△ABC∽△CDA,根据相似三角形的判定定理:平行于三角形一边的直线截其它两边或其它两边的延长线,所截的三角形与原三角形相似即可推出其它各对三角形相似.

解:图中相似三角形有△ABC∽△CDA△AGE∽△ABC△AFE∽△CBE△BGE∽△BAF△AGE∽△CDA5对,

理由是:四边形ABCD是平行四边形,

∴AD∥BCAB∥CDAD=BCAB=CD∠D=∠ABC

∴△ABC≌△CDA,即△ABC∽△CDA

∵GE∥BC

∴△AGE∽△ABC∞△CDA

∵GE∥BCAD∥BC

∴GE∥AD

∴△BGE∽△BAF

∵AD∥BC

∴△AFE∽△CBE

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】自行车远动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了,乙追上甲交接了训练用品(交接时间忽略不计),随后立即以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S(千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A_____千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC=2,∠BAC=45°.将△ABC绕点A逆时针旋转α度(0<α<180)得到△ADEBC两点的对应点分别为点DEBDCE所在直线交于点F

(1)当△ABC旋转到图1位置时,∠CAD   (用α的代数式表示),∠BFC的度数为   °;

(2)当α=45时,在图2中画出△ADE,并求此时点A到直线BE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,点EAD上,EC平分∠BED

1)试判断△BEC是否为等腰三角形,并说明理由.

2)若AB=1,∠ABE=45°,求BC的长.

3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是反比例函数y的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边ABC使点C落在第二象限,且边BCx轴于点D,若ACDABD的面积之比为12,则点C的坐标为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:

年度

2009

2010

2011

2012

投入技改资金x(万元)

2.5

3

4

4.5

产品成本y(万元/件)

7.2

6

4.5

4

(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.

(2)按照上述函数模型,若2013年已投入技改资金5万元

预计生产成本每件比2012年降低多少元?

如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 ,旋转角度是      度;

(2)若连结EF,则△AEF 三角形;并证明;

(3)若四边形AECF的面积为25,DE=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=45°,点MN在边OB上,OMxONx+4,点P是边OA上的点,且△PMN是等腰三角形.在x>2的条件下,(1)当x______时,符合条件的点P只有一个;(2)当x______时,符合条件的点P恰好有三个.(两个小题都只写出一个数即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )

③若,则平分④若,则

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

同步练习册答案