精英家教网 > 初中数学 > 题目详情

【题目】邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9kmC村,最后回到邮局.

(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;

(2)C村离A村有多远?

(3)邮递员一共骑了多少千米?

【答案】(1)图形见解析(2)6(3)18

【解析】试题分析:(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;
(2)可直接算出来,也可从数轴上找出这段距离;
(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.

试题解析:(1)依题意得,数轴为:

(2)依题意得:C点与A点的距离为:2+4=6(千米);

(3)依题意得邮递员骑了:2+3+9+4=18(千米).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】记y= f)=. 如: f1)表示当x=1y的值,即f1)==f)表示当=时y的值,即f)=.

试回答:

1f1)+f2)+f)+f3)+f)=__________

2f1)+f2)+f)+f3)+f)+……+f)+f)=__________.(结果用含的代数式表示, 为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:任意两个数,按规则扩充得到一个新数,称所得的新数为“如意数”.

(1)若直接写出的“如意数”

(2)如果,求的“如意数”,并证明“如意数”

(3)已知,且的“如意数”,则_______________________(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

A. a2﹣b2=a﹣b2 B. a+b2=a2+2ab+b2

C. a﹣b2=a2﹣2ab+b2 D. a2﹣b2=a+b)(a﹣b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE不能添加的一组条件是( )

A. AB=DB∠ A=∠ D B. DB=ABAC=DE C. AC=DE∠C=∠E D. ∠ C=∠ E∠ A=∠ D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标为(2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是___个单位长度;△AOC△BOD关于直线对称,则对称轴是___;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是___度;

(2)连结AD,交OC于点E,求∠AEO的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

1﹣2x=6

2x﹣11=7

3x+13=5x+37

43xx=+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料并解决有关问题:

我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x2|时,可令x+1=0x2=0,分别求得x=1x=2(称﹣12分别为|x+1||x2|的零点值).在实数范围内,零点值x=1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:

①x﹣1②﹣1≤x2③x≥2

从而化简代数式|x+1|+|x﹣2|可分以下3种情况:

x﹣1时,原式=﹣x+1x﹣2=﹣2x+1

当﹣1≤x2时,原式=x+1﹣x﹣2=3

x≥2时,原式=x+1+x2=2x1.综上讨论,原式=

通过以上阅读,请你解决以下问题:

1)化简代数式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1BC=2,则△ABE△BC′F的周长之和为(  )

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

同步练习册答案