精英家教网 > 初中数学 > 题目详情
如图,小林在平坦的场地上从A点向东走了3m,再向北走了2m,再向西走了1m,又向北走了1m,最后向东走了5m,到达B点,求A、B之间的距离.
考点:勾股定理的应用
专题:
分析:首先构造直角三角形,然后求得直角三角形的两条直角边的长,利用勾股定理求得斜边的长即可.
解答:解:如图,由题意得:AC=3+4=7米,BC=1+1+2=4米,
由勾股定理得:AB=
AC2+BC2
=
72+42
=
65
米,
答:A、B之间的距离为
65
米.
点评:本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.从今年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成如下一次函数关系:
月份x12
再生资源处理量y(吨)4050
月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为:z=
1
2
y2-20y+700,每处理一吨再生资源得到的新产品的售价定为100元.
(1)直接写出该单位每月再生资源处理量y(吨)与月份x之间关系式,月处理成本z(元)与月份x之间关系式.
(2)设该单位每月获得利润S元,写出S与x的关系式,并说明哪个月获得利润最大?最大是多少?
(3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三、四月份的再生资源处理量都比二月份减少了m%,该新产品的产量也随之减少,其售价都比二月份的售价增加了0.6m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位在保持三月份的再生资源处理量和新产品售价的基础上,其利润是二月份的利润的一样,求m.( m保留整数)
157
≈12.53,
156
≈12.49
158
≈12.57)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰△ABC内接于⊙O,AB=AC=5,BC=8,求点O到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

每千克单价为a元的糖果m千克与每千克单价为b元的糖果n千克混合,则混合后糖果的单价为每千克
 
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

有长为L的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.
(1)用关于L、t的代数式表示园子的面积S.
(2)当L=100m,t=30m时,求园子的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知下列命题:①对角线垂直且相等的四边形是正方形,②平分弦的直径垂直于弦,③对角互补的四边形内接与圆,④无理数是无限小数,其中原命题和逆命题均为真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BF、CE相交于点A,BE=BA,CA=CF,若D、M、N分别是BC,AE,AF的中点.
(1)求证:DM=DN:
(2)连接MN,若BC=14cm.MN=5cm.求△DMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

现定一种新运算@:a@b=ba,如3@2=23=8,则2@
1
2
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:sin30°+3cos245°-tan60°•tan30°.

查看答案和解析>>

同步练习册答案