精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则
AO
DO
等于(  )
A、
1
2
B、
1
3
C、
2
3
D、
2
5
3
考点:相似三角形的判定与性质,正方形的性质
专题:
分析:先证明△AOE∽△DOA,得出AO:DO=AE:AD,再由AE=
1
2
AB=
1
2
AD,即可得出结论.
解答:解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠DAO+∠EAO=90°,
∵E为AB的中点,
∴AE=
1
2
AB=
1
2
AD,
∵AF⊥DE,
∴∠AOE=∠DOA=90°,
∴∠DAO+∠ADO=90°,
∴∠EAO=∠ADO,
∴△AOE∽△DOA,
AO
DO
=
AE
AD
=
1
2

故选:A
点评:本题考查了正方形的性质和相似三角形的判定与性质,证明三角形相似是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把27430用科学记数法表示应是(  )
A、0.2743×103
B、27.43×103
C、274.3×10
D、2.743×104

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=-x+1交x,y轴于A,B两点,反比例函数y=
k
x
在第一象限内的图象上有点P,连AP,BP且四边形OAPB是正方形.
①求反比例函数的解析式;
②若动点P在双曲线上运动,作PM⊥x轴交AB于E点;PN⊥y轴交AB于F点.以下有两个结论:AF与BE的积不变,AF与BE的商不变,其中有一个是正确的,请选出正确的结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠BAC=90°,AD⊥BC,AB=4,DC=
9
5
,求sinC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是我们熟悉的“勾股树”,图中的三角形都是直角三角形,四边形都是正方形,其中∠ACB=∠A1C1B1=∠A2C2B2=90°,正方形①和②的面积比、正方形③和④的面积比均为1:2.
(1)求证:△A1B1C1∽△A2B2C2
(2)若△ABC、△A1B1C1、△A2B2C2的面积分别标记为S、S1、S2,猜想S、S1、S2之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):
甲:6,12,8,12,10,12;
乙:9,10,11,10,12,8;
(1)填表:
平均数众数方差
10
 
 
 
10
5
3
(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三个顶点都在网格的格点上,每个小正方形的边长均为1个单位长度.
(1)在网格中画出将△ABC绕点B顺时针旋转90°后的△A′BC′图形;
(2)求点A在旋转中经过的路线的长度(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,
BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,点E是AD的中点,连接CE、BD相交于点F,则△DEF的周长与△BCF的周长之比C△DEF:C△BCF=
 

查看答案和解析>>

同步练习册答案