精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC=

【答案】
【解析】∵DE是BC的垂直平分线,

∴CE=BE=5,CD=BD=3,∠CDE=90°,

∴DE= =4,

∴sinC= =

所以答案是:

【考点精析】本题主要考查了线段垂直平分线的性质和解直角三角形的相关知识点,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 , 求△A1B1C1旋转过程中扫过的面积(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,下列结论:
①4ac<b2;②a+c>b;③2a+b>0.
其中正确的有( )

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC 的三个顶点的位置如图所示,点 A的坐标是(-22),现将△ABC 平移,使点 A 变换为点 A,点 BC分别是 BC 的对应点.

(1) 请画出平移后的△ABC′(不写画法),并直接写出点BC的坐标:B C

(2) 若△ABC 内部一点 P 的坐标为(),则点 P 的对应点 P的坐标是

(3) 连接 ABCC,并求四边形 ABCC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】网络时代新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:

1)本次调查中,一共调查了多少名路人?

2)补全条形统计图,并求出a的值;

3)请算出扇形图中的b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境

在综合与实践课上,老师让同学们以两条平行线ABCD和一块含60°角的直角三角尺EFG(EFG90°,∠EGF60°)”为主题开展数学活动.

操作发现

(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠221,求∠1的度数;

(2)如图(2),小颖把三角尺的两个锐角的顶点EG分别放在ABCD上,请你探索并说明∠AEF与∠FGC之间的数量关系;

结论应用

(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEGα,则∠CFG等于______(用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车行驶时的耗油量为0.1/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.

(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;

(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.

(1)当t=5时,请直接写出点D,点P的坐标;
(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;
(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.

查看答案和解析>>

同步练习册答案