精英家教网 > 初中数学 > 题目详情

如图,BD是△ABC的一条角平分线,DK∥AB交BC于E点,且DK=BC,连接BK,CK,得到四边形DCKB,请判断四边形DCKB是哪种特殊四边形,并说明理由.

解:∵BD平分∠ABC
∴∠ABD=∠DBC
∵DK∥AB
∴∠ABD=∠BDK
∴∠CBD=∠BDK
∴EB=ED
∵DK=BC
∴EK=EC
∴∠EKC=∠ECK
∵∠BED=∠CEK
∴∠EKC=∠ECK=∠CBD=∠BDK=(180°-∠BED)
∴BD∥CK
∵BD=BD
∴△BDK≌△DBC
∴∠KBD=∠CDB

(i)当BA≠BC时,四边形DCKB是等腰梯形.理由如下:
∵BA≠BC,BD平分∠ABC
∴BD与AC不垂直
∴∠KBD+∠CDB=2∠CDB≠180°
∴DC与BK不平行
∴四边形DCKB是等腰梯形

(ii)当BA=BC时,四边形DCKB是矩形.理由如下:
∵BA=BC,BD平分∠ABC
∴BD与AC垂直
∴∠DBK=∠BDC=90°
∴CD平行于BK
∴四边形BDCK是矩形
分析:由角平分线的性质可得到∠ABD=∠DBC,再根据平行线的性质可推出∠ABD=∠BDK,利用AAS即可判定△BDK≌△DBC,由全等三角形的性质得∠KBD=∠CDB,再分BA≠BC或BA=BC进行确定四边形的形状.
点评:此题考查了学生对等腰梯形的判定及矩形的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,BD是△ABC的角平分线.已知∠1=∠A,∠2=∠3,求△ABC的各个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD=36,则S△BCD=
45
45

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是△ABC的角平分线,且BD=BC=AD.
(1)试判断△ABC的形状,并说明理由;
(2)请求出△ABC各角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是△ABC的中线,若△ABD的面积是10,则△ABC的面积是
20
20

查看答案和解析>>

同步练习册答案