精英家教网 > 初中数学 > 题目详情
5.已知:AB为⊙O的直径,AB=2,弦DE=1,直线AD与BE相交于点C,弦DE在⊙O上运动且保持长度不变,⊙O的切线DF交BC于点F.
(1)如图1,若DE∥AB,求证:CF=EF;
(2)如图2,当点E运动至与点B重合时,试判断CF与BF是否相等,并说明理由.

分析 (1)如图1,连接OD、OE,证得△OAD、△ODE、△OEB、△CDE是等边三角形,进一步证得DF⊥CE即可证得结论;
(2)根据切线的性质以及等腰三角形的性质即可证得结论.

解答 证明:如图1,连接OD、OE,
∵AB=2,
∴OA=OD=OE=OB=1,
∵DE=1,
∴OD=OE=DE,
∴△ODE是等边三角形,
∴∠ODE=∠OED=60°,
∵DE∥AB,
∴∠AOD=∠ODE=60°,∠EOB=∠OED=60°,
∴△AOD和△BOE是等边三角形,
∴∠OAD=∠OBE=60°,
∴∠CDE=∠OAD=60°,∠CED=∠OBE=60°,
∴△CDE是等边三角形,
∵DF是⊙O的切线,
∴OD⊥DF,
∴∠EDF=90°-60°=30°,
∴∠DFE=90°,
∴DF⊥CE,
∴CF=EF;

(2)相等;
如图2,点E运动至与点B重合时,BC是⊙O的切线,
∵⊙O的切线DF交BC于点F,
∴BF=DF,
∴∠BDF=∠DBF,
∵AB是直径,
∴∠ADB=∠BDC=90°,
∴∠FDC=∠C,
∴DF=CF,
∴BF=CF.

点评 本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4$\sqrt{30}$,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=3$\sqrt{2}$,求弦AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.某校排球队10名队员的身高(厘米)如下:
195,186,182,188,188,182,186,188,186,188.
这组数据的众数和中位数分别是(  )
A.186,188B.188,187C.187,188D.188,186

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,直线l1∥l2,∠1=20°,则∠2+∠3=200°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.5的相反数是(  )
A.5B.-5C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知直线a∥b,∠1=70°,则∠2=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.设A=$\frac{a-2}{{1+2a+{a^2}}}$÷(a-$\frac{3a}{a+1}}$).
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…
解关于x的不等式:$\frac{x-2}{2}$-$\frac{7-x}{4}$≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在社区全民健身活动中,父子俩参加跳绳比赛,已知儿子每分钟比父亲多跳20个,2分钟内父亲、儿子共跳520个.父亲、儿子每分钟各跳120、140个.

查看答案和解析>>

同步练习册答案