精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A21).

(1)分别求出这两个函数的解析式;

(2)当x取什么范围时,反比例函数值大于0;

(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;

(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.

【答案】1y=y=2x3;(2x0;(3x﹣0.5或0x2(4)点P′在直线上.

【解析】试题分析:(1)根据题意,反比例函数y=的图象过点A21),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A21),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y0时,解得对应x的取值即可;

3)由题意可知,反比例函数值大于一次函数的值,即可得2x﹣3,解得x的取值范围即可;

4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..

试题解析:解:(1)根据题意,反比例函数y=的图象与一次函数y=kx+m的图象相交于点A21),

则反比例函数y=中有k=2×1=2

y=kx+m中,k=2

过(21),解可得m=﹣3

故其解析式为y=y=2x﹣3

2)由(1)可得反比例函数的解析式为y=

y0,即0,解可得x0

3)根据题意,要反比例函数值大于一次函数的值,

2x﹣3,解可得x﹣0.50x2

4)根据题意,易得点P﹣15)关于x轴的对称点P′的坐标为(﹣1﹣5

y=2x﹣3中,x=﹣1时,y=﹣5

故点P′在直线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.

(1)每个文具盒、每支钢笔各多少元?

(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AGCF

1)求证:①△ABG≌△AFGGC的长;

2)求△FGC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。

(1)试判断B'E与DC的位置关系并说明理由。

(2)如果∠C=130°,求∠AEB的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CD在线段AB上,△PCD是等边三角形.

(1)ACCDDB满足怎样的关系时,△ACP∽△PDB?

(2)当△ACP∽△PDB时,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为假分式;当分子的次数小于分母的次数时,我们称之为真分式”.例如:像这样的分式是假分式;像这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:

.

1)将分式化为整式与真分式的和的形式;

2)如果分式的值为整数,求x的整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.

查看答案和解析>>

同步练习册答案