分析 作AE⊥BC于E,根据S平行四边形ABCD=BC•AE,先求出AE即可求解.
解答 解:
如图作AE⊥BC于E.
在RT△ABE中,∵∠AEB=90°,AB=4,∠B=60°,
∴BE=$\frac{1}{2}$AB=2,AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∵四边形ABCD是平行四边形,
∴S平行四边形ABCD=BC•AE=6×$2\sqrt{3}$=12$\sqrt{3}$.
故答案为12$\sqrt{3}$.
点评 本题考查平行四边形的性质、直角三角形30度角的性质等知识,解题的关键是记住平行四边形的面积公式,平行四边形的面积等于底乘高,所以中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{5}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com