精英家教网 > 初中数学 > 题目详情

如图,平行四边形ABCD中,E、F分别是BC、AD边上的点,四边形AECF是⊙O的内接四边形,且AC是⊙O的直径.
(1)求证:BE=DF;
(2)若BA与⊙O相切,BC=10cm,BE:CE=3:2,求AC的长.

(1)证明:∵四边形ABCD为平行四边形,
∴AB=CD,∠B=∠D,
∵AC是⊙O的直径,
∴∠AEC=∠AFC=90°,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中

∴△ABE≌△CDF,
∴BE=DF;
(2)解:∵BA与⊙O相切,
∴∠BAC=90°,
∵BC=10cm,BE:CE=3:2,
∴CE=4cm,
∵∠ACE=∠BCA,
∴Rt△CAE∽Rt△CBA,
∴CA:CB=CE:CA,即CA:10=4:CA,
∴CA=2(cm).
分析:(1)根据平行四边形的性质得到AB=CD,∠B=∠D,再根据圆周角定理得到∠AEB=∠CFD=90°,则可利用“AAS”判断△ABE≌△CDF,所以BE=DF;
(2)根据切线的性质得∠BAC=90°,由于BC=10cm,BE:CE=3:2,则CE=4cm,再证明Rt△CAE∽Rt△CBA,所以CA:CB=CE:CA,即CA:10=4:CA,然后解方程得到AC的长.
点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理、平行四边形的性质以及三角形全等、相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二精英家教网次方程x2-7x+12=0的两个根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E为x轴上的点,且S△AOE=
16
3
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,平行四边形ABCD中,∠ABC的角平分线BE交AD于E点,AB=3,ED=1,则平行四边形ABCD的周长是
14

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转一定角度后,分别交BC、AD于点E、F.
精英家教网
(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)当旋转角为90°时,在图2中画出直线AC旋转后的位置并证明此时四边形ABEF是平行四边形;
(3)在直线AC旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.(图供画图或解释时使用)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD是的周长为
20
20

查看答案和解析>>

同步练习册答案