精英家教网 > 初中数学 > 题目详情

如图,点O是等边△ABC内一点,∠AOB=105°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)试判断△COD的形状,并说明理由.
(2)△AOD能否成为等边三角形?如能,请求出α的值;如不能,请说明理由.

解:(1)△OCD是等边三角形,理由为:
由旋转可得△BCO≌△ACD,
∴OC=CD,∠BCO=∠ACD,
又△ABC是等边三角形,
∴∠ACB=60°,即∠BCO+∠OCA=60°,
∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=60°,又OC=CD,
则△OCD是等边三角形;
(2)△AOD不可能是等边三角形,理由为:
假设△AOD是等边三角形,则∠ADO=60°,
∵△OCD是等边三角形,
∴∠DOC=∠CDO=60°,即∠ADC=120°,
又∵∠AOB+∠α+∠COD+∠AOD=360°,且∠AOB=105°,
∴∠BOC=360°-105°-60°-60°=135°,
这与已知∠BOC=∠ADC矛盾,故假设错误,
则△AOD不可能是等边三角形.
分析:(1)三角形OCD是等边三角形,理由为:由旋转可知三角形BCO与三角形ACD全等,根据全等三角形的对应边相等,对应角相等可得出OC=CD,∠BCO=∠ACD,由三角形ABC为等边三角形,可得出内角∠ACB为60°,即∠BCO与∠OCA之和为60°,等量代换可得出∠ACD与∠OCA之和为60°,即∠OCD为60°,再由OC=CD,得到三角形OCD为等边三角形;
(2)三角形AOD不可能为等边三角形,理由为:假设三角形AOD为等边三角形,可得出∠ADO为60°,再由三角形OCD为60°,得到∠ADC为120°,即∠BOC为120°,而∠AOB=105°,∠AOC=120°,根据周角的定义求出∠BOC为135°,矛盾,故假设错误,得到三角形AOD不可能为等边三角形.
点评:此题考查了等边三角形的判定与性质,全等三角形的判定与性质,旋转的性质,以及反证法的运用,熟练掌握等边三角形的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,点D是等边三角形ABC内的一点,将△BDC绕点C顺时针旋转60°,试画出旋转后的三角形,并指出图中的全等图形以及它们的对应顶点、对应边和对应角.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,点P是等边三角形ABC内一点,BP=5cm,△PAB绕点B旋转后能与△MCB重合,连接PM,则PM=
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.以OC为一边作等边三角形OCD,连接AC、AD.
(1)当a=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•清流县质检)星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=
3
,OB=
5
.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将线段OC绕点C按顺时针方向旋转60°得到线段CD,连接OD、AD.
(1)求证:AD=BO;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时(直接写出答案),△AOD是等腰三角形?

查看答案和解析>>

同步练习册答案