【题目】已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.
(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?
(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?
【答案】(1)34或﹣66;(2)点P、点Q到A地的距离相等,理由见解析;(3)小乌龟到达的点与点B之间的距离是100米.
【解析】
(1)在数轴上表示-16的点移动50个单位后,所得的点表示为-16-50=-66或-16+50=34;
(2)数轴上点的移动规律是“左减右加”.依据规律计算即可;
(3)根据100为偶数可得在数轴上表示的数,再根据两点间的距离公式即可求解.
(1)﹣16+50=34,﹣16﹣50=﹣66.
答:B地在数轴上表示的数是34或﹣66.
(2)第七次行进后:,
第八次行进后:,
因为点P、Q与A点的距离都是4米,
所以点P、点Q到A地的距离相等;
(3)当n为100时,它在数轴上表示的数为:
,
(米).
答:小乌龟到达的点与点B之间的距离是100米.
科目:初中数学 来源: 题型:
【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交交费(元)与用水量(吨)的函数关系如图所示。
(1)分别写出当和时,与的函数关系式;
(2)若某用户该月用水21吨,则应交水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上, ,则斜边OF的长即为.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:_______________________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)
证明:∵∠1=∠2(已知)∠1=∠3(_______)
∴∠2=∠3(等量代换)
∴BD∥_____(_______)
∴∠4=_____(_______)
又∵∠A=∠F(已知)
∴AC∥_____(_______)
∴∠4=_____(_______)
∴∠C=∠D(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长方形运动场被分隔成、、、、共个区, 区是边长为的正方形, 区是边长为的正方形.
(1)列式表示每个区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果, ,求整个长方形运动场的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知连接A.B两地之间的公路长为600千米,甲开车从A地出发沿着此公路以100千米/小时的速度前往B地,乙骑自行车从B地出发沿此公路匀速前往A地.已知乙比甲晚出发1小时,乙出发4小时后与甲第一次相遇,当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m千米,则m=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com