精英家教网 > 初中数学 > 题目详情

【题目】已知:AB=AC,且AB⊥AC,DBC上,求证:

【答案】证明见解析

【解析】

AEBCE由于∠BAC=90°,AB=AC得到BAC是等腰直角三角形再由等腰直角三角形的性质得到BE=AE=EC进而得到BD= AEDEDC= AE+DE代入BD2+CD2计算结合勾股定理即可得到结论

AEBCE如图所示.∵AB=AC,且ABAC,∴△BAC是等腰直角三角形.∵AEBC,∴BE=AE=EC,∴BD=BEDE=AEDEDC=EC+DE= AE+DEBD2+CD2=AEDE2+AE+DE2= AE2+DE2-2AEDE+ AE2+DE2+2AEDE= 2AE2+2DE2= 2(AE2+DE2)=2AD2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y= (x<0)的图象经过点A,若SABO= ,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD是角平分线,DE⊥AD交AB于E,△ADE的外接圆⊙O与边AC相交于点F,过F作AB的垂线交AD于P,交AB于M,交⊙O于G,连接GE.
(1)求证:BC是⊙O的切线;
(2)若tan∠G= ,BE=4,求⊙O的半径;
(3)在(2)的条件下,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠矩形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某地有一地下工程,其底面是正方形,面积为405m2,四个角是面积为5m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.

下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:

①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为_______,关于y的方程为_______

②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);

③所以a=x-2y=______________________(结果保留根号);

④答:________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题. 随着人们环保意识的增强及科学技术的进步,各种绿色环保新产品进入千家万户,今年一月份小楠家将天然气热水器换成了太阳能热水器,减少天然气的用量,去年12月份小楠家的天然气费一共是96元,从今年一月份起天然气费价格每立方米上涨了25%,小楠家2月份的用气量比去年12月份少10立方米,2月份的天然气费一共是90元,请你求小楠家今年2月份用气量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了进一步普及足球知识,传播足球文化,某市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:
(1)a= , b=
(2)补全频数分布直方图;
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表该市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:

(1)xx-1)+2xx+1)-(3x-1)(2x-5),其中x=2.

(2),其中=

查看答案和解析>>

同步练习册答案