(1)解:连接AO,交EC于F,
∵AB切⊙O于A,
∴OA⊥AB,
∴∠OAB=90°,
在Rt△OAB中,由勾股定理得:OA=

=

=6,
答:⊙O的半径是6.
(2)直线EC与AB的位置关系是EC∥AB.

证明:∵AE=AC,
∴弧AE=弧AC,
∵OA过O,
∴OA⊥EC,
∵OA⊥AB,
∴EC∥AB.
(3)解:∵EC∥AB,
∴△OFC∽△OAB,
∴

=

,
∴

=

,
∴FC=

,
∵OA⊥EC,OA过O,
∴EC=2FC=

.
分析:(1)连接OA,交EC于F,根据切线性质得出∠OAB=90°,根据勾股定理求出即可;
(2)根据AE=AC推出弧AE=弧AC,根据垂径定理求出OA⊥EC,根据平行线判定推出即可;
(3)证△OFC∽△OAB,求出FC,根据垂径定理得出EC=2FC,代入求出即可.
点评:本题考查了勾股定理,相似三角形的性质和判定,切线性质,垂径定理,圆周角定理的应用,主要考查学生综合运用性质进行推理的能力.